

时空深度学习 Deep Learning for Spatio-Temporal Data

京东智能城市研究院 京东城市 时空AI产品部 2020年7月22日

城市计算(Urban Computing)

Trajectory Data Management and Mining

Yu Zheng, Xiaofang Zhou. Computing with Spatial Trajectories, Springer Press 2011 Yu Zheng. <u>Trajectory Data Mining: An Overview</u>. ACM Transactions on Intelligent Systems and Technology. 2015

- 1. Why Deep Learning meets ST data
- 2. Deep Neural Networks for ST data
 - □ Spatio-Temporal Neural Networks
 - ST Point Data, ST Gridded Data, ST Networks, ST Sequence Data
 - Advanced ST Neural Networks
 - ST Meta Learning, ST Network Architecture Search
- 3. More Spatio-Temporal AI Applications

Part 1. Why Deep Learning meets *Spatio-Temporal* data

Big *Spatio-Temporal* Data in Cities

Taxonomy of Spatio-Temporal (ST) Data

- Data Structures
- Spatio-temporal (ST) Properties

Spatial Properties • Hierarchy • Distance Different spatial granularities • Spatial closeness ٠ • Triangle inequality: City structures • $|d_1 - d_2| \le d_3 \le |d_1 + d_2|$ $u_1: u_2 > u_4$ 0.8 C_{10} 0.7 High Ratio Low C_{32}/C_{33} C_{34} $|C_{35} C_{3}$ C30 0.6 Data of $u_1 \bullet$, $u_2 \bullet$, $u_3 \bullet$, $u_4 \bullet$ 0.5 c_{ii} : The *j*th cluster on the *i*th layer 40 80 120 Distance(km)

Why Spatio-Temporal Data Is Unique

 $u_1: u_3 > u_2$

Junbo Zhang, Yu Zheng, et al. <u>Deep Spatio-Temporal Residual Networks for</u> <u>Citywide Crowd Flows Prediction</u>, AAAI 2017

Why Spatio-Temporal Data Is Unique

- Temporal properties
 - Temporal closeness
 - Period
 - Trend

Junbo Zhang, Yu Zheng, et al. <u>Deep Spatio-Temporal Residual Networks for</u> <u>Citywide Crowd Flows Prediction</u>, AAAI 2017

Why Deep Learning meets ST Data

- What Deep Learning can do for ST Data
 - Encoding a (single) ST dataset
 - Fusing multiple ST datasets
- What ST data can provide to Deep Learning
 - Massive and diverse Data
 - Computing infrastructures are ready
 - Application scenarios requiring
 - Instantaneous responses at large spaces
 - Collective computing
 - (traditional machine learning models many not be able to handle)

Taxi Trajectory Data of Shenzhen

Encoding Spatio-Temporal Properties

CNN is able to model spatial properties

RNN/LSTM is able to model **temporal** properties

Trajectories of taxis, trucks and buses

数

Fusing Multiple ST-Datasets

Why Deep Learning for ST Data

• Big ST-Data (**5G + IoT**)

- Deep Learning for ST-Data
 - Cannot fit raw spatiotemporal data into a deep learning model → Data transformation
 - Texts and images → spatial and spatiotemporal data;
 (Encoding spatiotemporal properties)
 - Mining a single data source → Mining data across
 different domains

Data transformation

Part 2. Deep Neural Networks for *Spatio-Temporal* data

2.1 Spatio-Temporal Neural Networks

Spatio-Temporal Neural Networks

DST Point Data: GeoMAN

DST Gridded Data: ST-ResNet

DST Network (Graph) Data: MVGCN, MDL

DST Sequence Data: DeepTTE

Spatio-Temporal Neural Networks

DST Point Data: GeoMAN

DST Gridded Data: ST-ResNet

ST Network (Graph) Data: MVGCN, MDL

ST Sequence Data: DeepTTE

ST Point Data (Geo-sensory Time Series)

• There are massive sensors deployed in physical world

- Properties
 - Each sensor has a unique geospatial location
 - Constantly reporting time series readings about different measurements
 - With **geospatial correlation** between their readings

| Insight

- Affected by many factors
 - Local information
 - Sensor correlations
 - External factors, e.g., weather, time and land use

Challenges

- Affected by many factors
 - Readings of previous time interval
 - Readings of other sensors in nearby regions
 - External factors: weather, time and land use
- Dynamic Inter-sensor correlations
- Dynamic temporal correlation

Spatial Attention

- Capture the dynamic inter-sensor correlation
- Local spatial attention
 - Adaptively capture the dynamic correlation between target series and each local feature
- Global spatial attention
 - Adaptively select relevant sensors to make predictions

Temporal Attention

• Select relevant previous time slots to make predictions

Datasets

- Water quality data
 - Residual chlorine, turbidity, pH, flow, etc.
 - From 14 sensors in Shenzhen
 - Update each 5 minutes
- Air quality data
 - PM2.5, PM10, NO2, SO2, O3, CO, *etc*.
 - From 35 sensors in Beijing
 - Hourly updates
- Weather forecasts
- POIs data
- Sensor networks

Dataset		Water Quality	Air Quality	
Target series		RC	PM2.5	
#Sensors		14	35	
#Attributes		10	19	
Time Spans		1/1/2012-	8/20/2014-	
		2014/12/31	2017/11/30	
Time Intervals		5 minutes	1 hour	
#Instances		4,415,040	920,640	
Mete-	#Sensors	8	16	
orology	#Attributes	6	13	
POIs	#POIs	185,841	651,016	
	#Categories	20	20	

Method	Water Quality		Air Quality	
wiethou	RMSE	MAE	RMSE	MAE
ARIMA	8.61E-02	7.97E-02	31.07	20.58
VAR	5.02E-02	4.42E-02	24.60	16.17
GBRT	5.17E-02	3.30E-02	24.00	15.03
FFA	6.04E-02	4.10E-02	23.83	15.75
stMTMVL	6.07E-02	4.16E-02	29.72	19.26
stDNN	5.77E-02	3.99E-02	25.64	16.49
LSTM	6.89E-02	5.04E-02	24.62	16.70
Seq2seq	5.80E-02	4.03E-02	24.55	15.09
DA-RNN	5.02E-02	3.52E-02	24.25	15.17
GeoMAN	4.34E-02	3.02E-02	22.86	14.08

(a) Evaluation on spatial attention (b) Future time step vs. RMSE

Figure 3: Performance comparison among different vairants.

(a) Results on water quality.

Figure 4: Encoder length vs. metrics over the two datasets.

Attention Visualization

- Case study over air quality dataset
 - Discuss on sensor S_0
 - 4:00 to 16:00 on Feb. 28, 2017

Spatio-Temporal Neural Networks

DST Point Data: GeoMAN

DST Gridded Data: ST-ResNet

ST Network (Graph) Data: MVGCN, MDL

DST Sequence Data: DeepTTE

ST Gridded Data

DNN-Based Urban Flow Prediction

Predict In-flow and out-flow of crowds in each region at next time interval throughout a city

Junbo Zhang, Yu Zheng, et al. <u>DNN-Based Prediction Model for Spatial-Temporal Data</u>. ACM SIGSPAITAL 2016

Junbo Zhang, Yu Zheng, et al. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction, AAAI 2017

UrbanFlow

数

Real-Time Crowd Flows Monitoring & Forecasting System in a City Guiyang - 1km*1km - InFlow -哪模们 石关凹 赵官村 新场 狮子山 武扒箐 下高寨河 白水陇 + G ~ 小坝 南平 -沙坝 岩崩 荒田 给妈田 下坝乡 土地关 麦架镇 下水 干冲 9 螃蟹甲 上大山 苗族布依族乡 675 王家坡 茅坡寺 马路 长冲 都拉布依族乡 谷坝村 养猪寨 茅草村 百花湖乡 南湖公园 (1) 杨家庄 平山窑 八百虎 都溪村、 培席 小漆山 茶山坡 Siper inter 治湾村 朱昌镇 瓦罐窑 偏坡布依族乡 磨刀石 桃子冲 赵家》 黑平 东风镇 》是高铁。 雅关村 购脚坝 狮子坡 杨家寨 水淹坝 龙井村 马房边 车家泰 塘冲 醒狮镇 大山头 米汤井 大沙田 喜韵寡 (血)情人谷 冯家庄 萝卜村 头泵 上院 水桥洼 后山 纱帽山 50.001 阴洞 Y口標 场惠村 汪家寨 小黄派 水塘 牛场坡 金清路 羊场村 马蝗田 翁井路口 老汪田 跑马田 小寨 老寨 龙潭边 大偏坡 杨桐井 下小河 清镇市 三宝村 () 贵阳市蒜林公园 摆狮头 贵阳龙洞 蓬国际机场 G60 杨柳井 葫芦关 大荒坡 大龙滩 阳阳用植 毛栗坡 下沙坡 下坡寨 上栗山 倪儿关 小谷定 菠萝山 久安修 背后坡 红岩 菠箕田 Tuli 小碧寨 把种田 10-25 金山大东 25-50 营盘坡 小寨 50-100 画眉寨 100-150 线 麦坪乡 土地掌 150-200 585 课前 200-300 安妹井 5001 1笠1 300-500 移桂线。 石板 一贵广高铁一贵广高铁一 500-700 京东 大炷塘 老罗貨 下关山 700-1000 腊妹滩 猫洞 1000+ 😆 野狗 大湾 石龙村 ◎贵州大学 一例昆线 -私 汤庄村 龙山镇 585 CopyRight © 2017 Microsoft Corporation. 深冲洞 (血)天河潭风景区 Leaflet | Bing, © AND, © 2017 Microsoft Corporation

Many Applications

41

Challenges

- Urban crowd flow depends on many factors
 - Flows of previous time interval
 - Flows of nearby regions and distant regions

300

200

100

Inflow

25

- Weather, traffic control and events
- Capturing spatial properties
 - Spatial distance and hierarchy
- Capturing temporal properties

Ratio

10

Time Gap (half hour) (a) Closeness of Office Area

5

15

20

- Temporal closeness
- Period and trend

Converting Trajectories into Video-like Data

Junbo Zhang, Yu Zheng, et al. <u>Deep Spatio-Temporal Residual Networks for</u> <u>Citywide Crowd Flows Prediction</u>, AAAI 2017

ST-ResNet Architecture: A Collective Prediction

京东城市

数

Junbo Zhang, Yu Zheng, et al. <u>Deep Spatio-Temporal Residual Networks for</u> <u>Citywide Crowd Flows Prediction</u>, AAAI 2017

Residual Deep Convolutional Neural Network

Citywide Crowd Flows Prediction, AAAI 2017

ST-ResNet Architecture

- A Collective Prediction
- Capture temporal closeness, period and trend
- Capture external factors
- Capture spatial correlation of both near and far distances
- Fusing factors differently in different regions

$$\begin{array}{c} (\omega_{c,1,}\omega_{p,1,}\omega_{q,1}) & \cdots \\ \vdots & \ddots \end{array}$$

 $\omega_{c,n},\omega_{p,n},\omega_{q,n}$

Junbo Zhang, Yu Zheng, et al. <u>Deep Spatio-Temporal Residual Networks for</u> <u>Citywide Crowd Flows Prediction</u>, AAAI 2017

Experiments

DatasetsDatasetTaxiBJBikeNYCData typeTaxi GPSBike rentLocationBeijingNew York $7/1/2013 - 10/30/2013$ $3/1/2014 - 6/30/2014$ $4/1/2014 - 9/30/2014$ J/2015 - 6/30/2015 $3/1/2015 - 6/30/2015$ $11/1/2015 - 4/10/2016$ Time Span $3/1/2015 - 6/30/2015$ $11/1/2015 - 4/10/2016$ Time interval 30 minutes1 hourGird map size $(32, 32)$ $(16, 8)$ Trajectory dataAverage sampling rate (s) ~ 60 4 taxis/bikes $34,000+$ $6,800+$ 4 vailable time interval $22,459$ $4,392$ External factors (holidays and meteorology) $\#$ holidays 41 20 Weather conditions16 types (e.g., Sunny, Rainy) \backslash Temperature / °C $[-246, 41.0]$ \backslash Wind speed / mph $[0, 48.6]$ \backslash					
$\begin{tabular}{ c c c c c c } \hline Data type & Taxi GPS & Bike rent \\ Location & Beijing & New York \\\hline 7/1/2013 - 10/30/2013 & \\ 3/1/2014 - 6/30/2014 & 4/1/2014 - 9/30/2014 \\\hline 3/1/2015 - 6/30/2015 & \\ 11/1/2015 - 4/10/2016 & \\\hline Time interval & 30 minutes & 1 hour \\\hline Gird map size & G2, 32) & (16, 8) \\\hline Trajectory data & \\ Average sampling rate (s) & ~ 60 & \\ \# taxis/bikes & 34,000+ & 6,800+ \\\# taxis/bikes & 34,000+ & 6,800+ \\\# taxis/bikes & 34,000+ & 6,800+ \\\# taxis/bikes & 34,000+ & 6,800+ \\\hline External factors (holidays and meteorology) \\\hline # holidays & 41 & 20 \\\hline Weather conditions & 16 types (e.g., Sunny, Rainy) & \\Temperature / ^C & [-24.6, 41.0] & \\\hline Wind speed / mph & [0, 48.6] & \\\hline \end{tabular}$	Datasets	Dataset	TaxiBJ	BikeNYC	
$\begin{tabular}{ c c c c c c } \hline Location & Beijing & New York \\\hline 7/1/2013 - 10/30/2013 \\ 3/1/2014 - 6/30/2014 & 4/1/2014 - 9/30/2014 \\ 3/1/2015 - 6/30/2015 \\ 11/1/2015 - 4/10/2016 \\\hline Time interval & 30 minutes & 1 hour \\Gird map size & (32, 32) & (16, 8) \\\hline Trajectory data \\\hline Average sampling rate (s) & ~ 60 & \\& \# taxis/bikes & 34,000+ & 6,800+ \\& \# taxis/bikes & 16 types (e.g., Sunny, Rainy) \\& Weather conditions & 16 types (e.g., Sunny, Rainy) \\& Temperature / °C & [-24, 6, 41.0] \\& Wind speed / mph & [0, 48.6] \\& \hline \end{tabular}$		Data type	Taxi GPS	Bike rent	KING
$\frac{7/1/2013 - 10/30/2013}{3/1/2014 - 6/30/2014} + 4/1/2014 - 9/30/2014}{3/1/2015 - 6/30/2015}$ $\frac{7/1/2013 - 10/30/2013}{3/1/2014 - 6/30/2014} + 4/1/2014 - 9/30/2014}{3/1/2015 - 6/30/2015}$ $\frac{11/1/2015 - 4/10/2016}{11/1/2015 - 4/10/2016}$ Time interval 30 minutes 1 hour Gird map size (32, 32) (16, 8) Trajectory data Average sampling rate (s) ~ 60 # taxis/bikes 34,000+ 6,800+ # available time interval 22,459 4,392 External factors (holidays and meteorology) # holidays 41 20 Weather conditions 16 types (<i>e.g.</i> , Sunny, Rainy) Temperature / °C [-24.6, 41.0] Wind speed / mph [0, 48.6] $\frac{7/1/2013 - 10/30/2014}{3/1/2014 - 9/30/2014}$		Location	Beijing	New York	
Time Span $3/1/2014 - 6/30/2014$ $3/1/2015 - 6/30/2015$ $11/1/2015 - 6/30/2015$ $11/1/2015 - 4/10/2016$ Time interval Gird map size 30 minutes $(32, 32)$ $(16, 8)$ Average sampling rate (s) # taxis/bikes ~ 60 $(34, 000+)$ Average sampling rate (s) # taxis/bikes ~ 60 $(34, 000+)$ External factors (holidays and meteorology) # holidays 41 20 Weather conditionsHolidays 41 20 Weather conditionsMeather conditions Temperature / °C Wind speed / mph 16 types (e.g., Sunny, Rainy) $(0, 48.6]$		-	7/1/2013 - 10/30/2013		
Nime Span $3/1/2015 - 6/30/2015$ $11/1/2015 - 4/10/2016$ Time interval Gird map size 30 minutes1 hour $(32, 32)$ Trajectory dataAverage sampling rate (s) # taxis/bikes ~ 60 $(34, 000) +$ \langle $(32, 459)$ Average sampling rate (s) # taxis/bikes ~ 60 $(34, 000) +$ \langle $(32, 32)$ External factors (holidays and meteorology) # holidays 41 20 Weather conditions 20 Weather conditionsWeather conditions16 types (e.g., Sunny, Rainy) $(0, 48.6]$ \langle		Time Spon	3/1/2014 - 6/30/2014	4/1/2014 - 9/30/2014	
$\frac{11/1/2015 - 4/10/2016}{30 \text{ minutes}} \\ 1 \text{ hour}\\ Gird map size \\ (32, 32) \\ (16, 8) \\ \hline \mathbf{Trajectory data} \\ Average sampling rate (s) \\ * taxis/bikes \\ 34,000+ \\ * available time interval \\ 22,459 \\ \hline \mathbf{External factors (holidays and meteorology)} \\ # holidays \\ 41 \\ 20 \\ \hline \mathbf{W}eather conditions \\ 16 types (e.g., Sunny, Rainy) \\ \hline \mathbf{Temperature / °C} \\ \hline [-24.6, 41.0] \\ \hline \mathbf{Wind speed / mph} \\ [0, 48.6] \\ \hline \mathbf{V} \\ $		Time Span	3/1/2015 - 6/30/2015		
Time interval 30 minutes 1 hour Gird map size $(32, 32)$ $(16, 8)$ Trajectory dataAverage sampling rate (s) ~ 60 4 verage sampling rate (s) ~ 60 1 4 verage sampling rate (s) ~ 60 1 4 verage sampling rate (s) $22,459$ $4,392$ External factors (holidays and meteorology) $\#$ holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy) 16 types (e.g., Sunny, Rainy) 16 16 types (e.g., Minny, Rainy) 16 <td></td> <td></td> <td>11/1/2015 - 4/10/2016</td> <td></td> <td></td>			11/1/2015 - 4/10/2016		
SourceSimilarSimilarSimilarSimilarSimilarSourceSourc		Time interval	30 minutes	1 hour	
Trajectory dataAverage sampling rate (s) ~ 60 \# taxis/bikes $34,000+$ $6,800+$ # vailable time interval $22,459$ $4,392$ External factors (holidays and meteorology)# holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy)\Temperature / °C $[-24.6, 41.0]$ \Wind speed / mph $[0, 48.6]$ \		Gird map size	(32, 32)	(16, 8)	
Average sampling rate (s) ~ 60 \backslash # taxis/bikes $34,000+$ $6,800+$ # available time interval $22,459$ $4,392$ External factors (holidays and meteorology)# holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy) \backslash Temperature / °C $[-24.6, 41.0]$ \backslash Wind speed / mph $[0, 48.6]$ \backslash			Trajectory data		1 2 2 8 2 2 2 1
* 700GB # taxis/bikes 34,000+ 6,800+ * available time interval 22,459 4,392 External factors (holidays and meteorology) # holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy) \ Temperature / °C [-24.6, 41.0] \ Wind speed / mph [0, 48.6] \		Average sampling rate (s)	~ 60	\	
> 700GB # available time interval 22,459 4,392 External factors (holidays and meteorology) # holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy) \ Temperature / °C [-24.6, 41.0] \ Wind speed / mph [0, 48.6] \		# taxis/bikes	34,000+	6,800+	
> 700GB External factors (holidays and meteorology) # holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy) \ Temperature / °C [-24.6, 41.0] \ Wind speed / mph [0, 48.6] \		# available time interval	22,459	4,392	
> 700GB # holidays 41 20 Weather conditions 16 types (e.g., Sunny, Rainy) \ Temperature / °C [-24.6, 41.0] \ Wind speed / mph [0, 48.6] \		External fa	4		
> 700GB Weather conditions 16 types (e.g., Sunny, Rainy) \ Temperature / °C [-24.6, 41.0] \ Wind speed / mph [0, 48.6] \		# holidays	41	20	STATE TO
> / 00GB Temperature / °C [-24.6, 41.0] \ Wind speed / mph [0, 48.6] \	> 700CB	Weather conditions 1	6 types (e.g., Sunny, Rainy) \	COCA A
Wind speed / mph $[0, 48.6]$	> /0030	Temperature / °C	[-24.6, 41.0]	\	- 01
		Wind speed / mph	[0, 48.6]	\	

Baseline	Spatia I	Tempor al	Intra- region dependenc e	External Factors			
HA		1					
ARIMA		1					
SARIMA		1					
VAR		\checkmark	\checkmark				
RNN/ LSTM/ GRU (3, 6, 12, 24, 48, 336)		1	1				
ST-ANN	1	1					
DeepST	1	1	1	1			
ST-ResNet / / / / / / ST-ResNet with 4 residual units							

Experiments

京东城市

旗

数

(c) Parameter sensitivity

(a) Different network architectures

Junbo Zhang, Yu Zheng, et al. Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks. AI Journal, 2018

Visualization of the Fusion Component

Junbo Zhang, Yu Zheng, et al. Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks. AI Journal, 2018

Spatio-Temporal Neural Networks

DST Point Data: GeoMAN

DST Gridded Data: ST-ResNet

DST Network (Graph) Data: MVGCN, MDL

■ST Sequence Data: DeepTTE

AI预测城市不规则区域人流量

Urban Flow Prediction In Irregular Regions

Predict Inflow and outflow of crowds in each irregular region at next time interval throughout a city

(b) Measurement of flows

Starting 🕁

- Important for:
 - Traffic management
 - Risk assessment
 - Public safety

Junkai Sun, Junbo Zhang, et al. <u>Predicting Citywide Crowd Flows in Irregular Regions</u> <u>Using Multi-View Graph Convolutional Networks</u>. *IEEE TKDE 2020*

Challenges

- Interactions and spatial correlations between different regions
 - Flows of adjacent (1-hop) regions
 - Flows of distant (multi-hop) regions
 - Region's inflow and outflow interact with each other
- Temporal correlations among different time intervals
 - Flows of recent previous time intervals (Closeness)
 - Flows of daily periodic time intervals (*Periods*)
 - Flows of weekly, monthly, quarterly time intervals (*Trends*)
- External factors and meta features
 - Holidays, weekdays, weekends
 - Weather information (rainstorm etc.)

下

数

Irregular Regions Construction

- 1. Are adjacent on the geographical map
- 2. Have similar crowd flow patterns

Mapping Trajectories Into Irregular Regions

Junkai Sun, Junbo Zhang, et al. <u>Predicting Citywide Crowd Flows in Irregular Regions</u> <u>Using Multi-View Graph Convolutional Networks</u>. *IEEE TKDE 2020*

Spatial GCN

MVGCN Architecture: A Multi-View Framework

Junkai Sun, Junbo Zhang, et al. <u>Predicting Citywide Crowd Flows in Irregular Regions</u> 京东城市 Using Multi-View Graph Convolutional Networks. IEEE TKDE 2020

歚

Experiments

京东城市

	Dataset	TaxiNYC	TaxiBJ	BikeDC	BikeNYC
	Data type	Taxi trip	Taxi GPS	Bike rent	Bike rent
	Location	NYC	Beijing	D.C.	NYC
	Start time	1/1/2011	7/1/2013	1/1/2011	7/1/2013
	End time	6/30/2016	4/10/2016	12/31/2016	12/31/2016
4 Datasets	Time interval	1 hour	1 hour	1 hour	1 hour
	# timesteps	48192	12336	52608	30720
	<pre># regions (stations)</pre>	100	100	120 (472)	120 (416)
	# holidays	627	105	686	401
	Weather	λ	16 types	\setminus	\setminus
	Temp. / °C	λ	[-24.6,41]	\setminus	\setminus
	WS / mph	λ	[0,48.6]	\mathbf{i}	\setminus

Performance Comparison

Dataset	Metric	HA	VAR	GBRT	FC-LSTM	GCN	DCRNN	FCCFnoTrans	FCCF	ST-MGCN	MVGCN
TaviNIVC	RMSE	101.54	30.78	83.71	27.82	26.52	25.50	26.02	26.00	23.53	23.15
Taxin iC	MAE	33.02	11.21	23.46	11.25	11.12	11.20	9.25	9.24	9.52	9.40
TaviBI	RMSE	38.77	18.79	33.89	19.04	17.38	16.44	18.70	18.42	16.30	14.37
Taxibj	MAE	22.89	11.38	20.34	11.86	10.60	9.68	10.74	10.44	10.18	9.11
BikaDC	RMSE	2.61	1.95	3.46	1.88	1.88	1.90	2.22	2.14	-	1.72
DIREDC	MAE	1.48	1.20	1.98	1.10	1.08	1.20	1.34	1.27	-	1.00
BikeNIVC	RMSE	6.77	4.21	8.57	4.66	5.06	4.35	4.41	4.19	-	4.15
DIREIVIC	MAE	4.00	2.71	5.17	2.78	2.85	2.90	2.79	2.65	-	2.60

Junkai Sun, Junbo Zhang, et al. <u>Predicting Citywide Crowd Flows in Irregular Regions</u>

Using Multi-View Graph Convolutional Networks. IEEE TKDE 2020

Experiments

Sudden changes

Junkai Sun, Junbo Zhang, et al. <u>Predicting Citywide Crowd Flows in Irregular Regions</u> <u>Using Multi-View Graph Convolutional Networks</u>. *IEEE TKDE 2020*

Spatio-Temporal Neural Networks

DST Point Data

DST Gridded Data

DST Network (Graph) Data: MVGCN, MDL

■ST Sequence Data: DeepTTE

Spatio-Temporal Networks (Graphs)

- Nodes
 - Spatial coordinates
 - Distance between nodes
 - Moving over time

- Edges
 - Temporal dynamic properties
 - Dynamic structures

Predicting Transition and In/out Flows in a ST-Network

- Scale and complexity
 - Dimension is very high
 - In/out-flow: m * m
 - Transition matrix: $m^2 * m^2$
- Model multiple correlations
 - Spatio-temporal dependencies
 - In/out flows and transition flow are highly correlated and mutually reinforced
 - External factors: Events, weather, accidents
- Dynamics and sparsity
 - Transition changes over time much more tremendously than in/out flows
 - Transition that will really occur at the next time interval may be a very small portion of the $m^2 * m^2$ possibilities (i.e. very sparse)

Multitask Deep Learning (MDL) Framework

东城市

数

Junbo Zhang et al. Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning. IEEE TKDE, 2019

Data Converting: Graph → Tensor

EdgeNet for Transition Prediction

- Tackle the sparse and high-dimensional transitions using a *spatial embedding* layer:
 - $\mathcal{Z}_t(:,i,j) = \mathbf{W}_m \mathcal{M}_t(:,i,j) + \mathbf{b}_m, 1 \le i \le I, 1 \le j \le J$
 - Fully convolutional networks with residual connections:

•

Couple EdgeNet and NodeNet

Sum Fusion

- Must have the same shape
- Easily harm the information contained in each of them

Concat Fusion

- Shapes can be different
- Integrate two levels of node and edge flows by mutually reinforcing

Other fusion methods?

- Multiply Fusion
- Kullback–Leibler (KD) divergence

Fusing External Factors

 $\mathbf{F}_{m}(i,j) = \sigma \left(\mathbf{W}_{e}(:,i,j) \cdot \mathcal{E}_{t}(:,i,j) + \mathbf{b}_{e}(i,j) \right), 1 \le i \le I, 1 \le j \le J$

Beijing (2013~2016) NYC (2011~2014)

Inflow/outflow prediction of two regions, New York City

Evaluation on Fusing Mechanisms

Bridge

- Concat fusion
- Sum fusion

Fusing external features

- Gating
- Simple (*i.e.* sum fusion used in ST-ResNet)
- without

Fusing	g type	RMSE/ MAE				
Bridge	External	inflow	outflow	transition		
CONCAT	GATING	65.30/ 17.27	55.29/17.66	11.68/ 3.70		
CONCAT	SIMPLE	68.51/ 17.90	58.51/18.61	11.91/ 3.78		
CONCAT	w/o	75.79/ 18.78	61.60/ 19.19	11.87/ 3.74		
SUM	GATING	67.82/ 17.87	65.18/ 19.80	12.67/ 3.88		
SUM	SIMPLE	71.65/ 18.44	67.20/20.34	12.77/ 3.96		
SUM	w/o	80.50/ 20.07	61.33/ 19.54	12.66/ 3.99		

Spatio-Temporal Neural Networks

DST Point Data: GeoMAN

DST Gridded Data: ST-ResNet

ST Network (Graph) Data: MVGCN, MDL

■ST Sequence Data: DeepTTE

Travel Time Estimation (TTE)

TTE is a long-standing and critically important topic in the area of Intelligent Transportation Systems

- Dispatch taxis to passengers in shortest time
- Better planning the routes, avoiding congested roads
- Help to alleviate urban traffic congestion

Dong Wang, **Junbo Zhang**, et al. When Will You Arrive Estimating Travel Time Based on Deep Neural Networks. AAAI 2018

- Individual vs collective
 - Estimate local paths: Cannot handle intersections, traffic lights and direction turns
 - Estimate entire path: uneven data distribution

- Diverse influences
 - Spatial correlations: various & complex
 - Temporal dependencies
 - External factors (day of the week, starting time, driver, distance)

24:00

20:00

Spd(km/h)

0:00

5:00

10:00

115:00

DeepTTE: Deep Learning + Multitask Learning

- Capture spatial dependencies
- Handle external factors & share similar pattern
- Learn temporal dependencies
- Address imbalance data problem
- Attention module to learn weights for different local path
- Help train deeper network for better result

Dong Wang, Junbo Zhang, et al. When Will You Arrive Estimating Travel Time Based on Deep Neural Networks. AAAI 2018

Geo-Conv Layer

Local path with more intersections or in extremely congested need more attention.

- Transforms the raw GPS sequence to a series of feature maps.
- Capture spatial correlations of the local paths
- Remain the information in a fine granularity.

Chengdu Dataset: Chengdu Dataset consists of 9,737,557 trajectories (1.4 billion GPS records) of 14864 taxis in August 2014 in Chengdu, China. The shortest trajectory contains only 11 GPS records (2km) and the longest trajectory contains 128 GPS records (41km).

Beijing Dataset: Beijing Dataset consists of 3, 149, 023 trajectories (0.45 billion GPS records) of 20442 taxis in April 2015 in Beijing, China. The shortest trajectory contains 15 GPS records (3.5km) and the longest trajectory contains 128 GPS records (50km).

	Chengdu			Beijing			
	MAPE (%)	RMSE (sec)	MAE (sec)	MAPE (%)	RMSE (sec)	MAE (sec)	
AVG	28.1	533.57	403.71	24.78	703.17	501.23	
D-TEMP	22.82	441.50	323.37	19.63	606.76	402.50	
GBDT	19.32 ± 0.04	357.09 ± 2.44	266.15 ± 2.24	19.98 ± 0.02	512.96 ± 3.96	393.98 ± 2.99	
MlpTTE	16.90 ± 0.06	379.39 ± 1.94	265.47 ± 1.53	23.73 ± 0.14	701.61 ± 1.82	489.54 ± 1.61	
RnnTTE	15.65 ± 0.06	358.74 ± 2.02	246.52 ± 1.65	13.73 ± 0.05	408.33 ± 1.83	275.07 ± 1.48	
DeepTTE	11.89 ± 0.04	282.55 ± 1.32	$\boxed{186.93\pm1.01}$	10.92 ± 0.06	$\textbf{329.65} \pm \textbf{2.17}$	218.29 ± 1.63	

Table 1: Performance	e Comparison
----------------------	--------------

Dong Wang, **Junbo Zhang**, et al. When Will You Arrive Estimating Travel Time Based on Deep Neural Networks. AAAI 2018

Error rates for trajectories with different lengths.

Error rates for different β .

Loss:
$$\beta \cdot L_{local} + (1 - \beta) \cdot L_{en}$$

2.1 ST Neural Networks 小结

Part 2.2 Advanced ST Neural Networks

➤ ST-MetaNet: Learning parameters → Generating parameters

➤ AutoST: Manually-designed → Automated Network Architecture Search

Urban Traffic Prediction from Spatio-Temporal Data using Deep Meta Learning

KDD 2019

Intro. to Urban Traffic

□ Traffic data includes:

- Speed data
- Flow data
- Regional demand data
- □ Important for:
 - Traffic management
 - Risk assessment
 - Service provide

Intro. to Urban Traffic Prediction

Traffic data

Geo-attributes

Predict urban traffic on each location at next time interval throughout a city by using *historical traffic data* and *geo-attributes* (e.g., points of interests and road networks)

Intro. to Urban Traffic Prediction

Traffic data collected from loop detectors

	sensor_0	sensor_1	sensor_2	sensor_n
2018/01/01 00:00:00	60.0	65.0	70.0	
2018/01/01 00:05:00	61.0	64.0	65.0	
2018/01/01 00:10:00	63.0	65.0	60.0	
	•••			

Points of interests

Road networks

Challenges – ST correlations

Spatial correlations

Traffic is moving on road networks, so the state of a location can broadcast to other locations.

□ Temporal correlations

The state of a location can impact its latter states

Challenges – Diversity of ST Correlations

□ Characteristics of locations and their mutual relationship are diverse, depending on their own

geo-attributes.

Locations with similar combinations of geo-attributes lead to similar characteristics of

locations and analogous types of ST correlations.

Insights

We build a geo-graph to describe spatial structures of road networks

- Nodes locations
- Edges relation between locations

Geographical attributes *reveals* characteristics of nodes and edges & *impacts* different types of ST correlations.

Framework of ST-MetaNet

Recurrent Neural Network (RNN) Embedding the sequence of urban traffic.

Meta Graph Attention Network (Meta-GAT) Modeling diverse spatial correlations.

Meta Recurrent Neural Network (Meta-RNN) Modeling diverse temporal correlations.

Meta-knowledge Learner Learning node & edge characteristics from geo-attributes.

Meta Learner

Generating parameter weights in GAT and RNN.

Meta Graph Attention Network

Meta Recurrent Neural Network

■ Datasets: TaxiBJ & METR-LA

Metrics:

•
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- $MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i \hat{y}_i|}{y_i}$
- Baselines:
 - Statistics models: Historical Average, ARIMA
 - Tree model: GBRT
 - Deep models: Seq2Seq, GAT-Seq2Seq, DCRNN, ST-ResNet

Tasks	Taxi flow prediction	Speed prediction		
Prediction target	inflow & outflow	traffic speed		
Timespan	2/1/2015 - 6/2/2015	3/1/2012 - 6/30/2012		
Time interval	1 hour	5 minutes		
# timestamps	3600	34272		
# nodes	1024	207		
# edges	4114	3726		
# node features	989	20		
<pre># edge features</pre>	32	1		

Evaluation on Prediction Accuracy

		MAE (\$)			RMSE (↓)					
	城市区域流量预测		overall	1hour	2hour	3hour	overall	1hour	2hour	3hour
	HA		26.2	26.2	26.2	26.2	56.5	56.5	56.5	56.5
Learning	ARIMA		40.0	27.1	41.2	51.8	86.8	58.3	77.0	108.0
_ oanng	GBRT		28.8	22.3	29.8	34.2	60.9	47.7	62.6	70.3
parameters 🔨	Seq2Seq	[333k]	21.3 ± 0.06	17.8±0.05	22.0 ± 0.06	24.2 ± 0.09	42.6±0.14	35.1 ± 0.07	43.6±0.16	48.1±0.20
	GAT-Seq2Seq	[407k]	18.3±0.13	16.3±0.12	18.7±0.12	19.9±0.14	35.6±0.23	31.9±0.21	36.3±0.20	38.4±0.30
	ST-ResNet	[445k]	18.7±0.53	16.8±0.50	18.9±0.57	20.3±0.52	36.1±0.59	31.9±0.69	36.4±0.71	39.5±0.46
	ST-MetaNet	[268k]	16.9 ± 0.13	$15.0{\pm}0.14$	17.3 ± 0.14	$18.4{\pm}0.10$	$34.0{\pm}0.25$	$29.9{\scriptstyle\pm}0.08$	$34.7{\pm}0.25$	37.1 ± 0.41
Concrating	城市路网车辆速度预测		overall	15min	30min	60min	overall	15min	30min	60min
Generating	НА		4.79	4.79	4.79	4.79	8.72	8.72	8.72	8.72
parameters	ARIMA		4.03	3.27	3.99	5.18	7.94	6.14	7.78	10.10
	GBRT		3.85	3.16	3.85	4.85	7.48	6.05	7.50	9.08
	Seq2Seq	[81k]	3.55 ± 0.01	2.98 ± 0.01	3.57±0.01	4.38±0.01	7.27±0.01	5.88±0.01	7.26±0.01	8.88 ± 0.02
	GAT-Seq2Seq	[113k]	3.28±0.00	2.83±0.01	3.31±0.00	3.93 ± 0.01	6.66±0.01	5.47±0.01	6.68±0.00	8.03±0.02
	DCRNN	[373k]	3.10 ± 0.01	2.75 ± 0.01	3.14±0.01	$3.60{\pm}0.02$	6.31±0.03	5.33 ± 0.02	6.45 ± 0.04	7.65±0.06
	ST-MetaNet	[85k]	3.05 ± 0.02	$2.68 {\pm} 0.02$	$3.09{\pm}0.03$	$3.60{\pm}0.04$	$6.25{\pm}0.02$	$5.15{\scriptstyle\pm0.02}$	$6.25{\pm}0.05$	$7.52{\pm}0.01$

Evaluation on Meta Knowledge

Validate that meta knowledge can reveal the similarity of ST correlations on nodes.

- □ For each node in the embedding space, find its k-nearest neighborhoods
- Calculate the similarity between node & its neighbor based on the test dataset

AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction

□ The spatio-temporal correlation is:

- Heterogeneous to different tasks varying from bike flow to taxi flow.
- Diverse to traffic conditions from core city to small city.

Is there a network suitable for all scenarios?

Observations

Two observations illustrating the optimal architecture is distinct among different cities:

- Cities may have different spatial range preferences
- Low and high-level features do not contribute equally in all cases.

□ AutoST model :

- Multi-range(long-range/short-range)
 correlations automatically.
- *Fusing multi-level* features dynamically.

Methodology-Search Space

□ ResNet

- Fixed Convs
- Fixed Conns
- □ Search space of *Darts* (NAS for CV) :
 - mix op block includes all candidate ops
 - (convs, pools and conns).
 - subnet (automatic) and outer net (fixed).

□ Search space of *ST-NASNet*.

- mix convolution block
- mix connection block
- NAS network (automatic)

Experiment-Settings

- **D** Dataset Description:
 - Four datasets including TaxiBJ, CrowdBJ, TaxiJN and TaxiGY.
- **D** Baseline algorithms:
 - ST models: ST-ResNet, ST-3DNet and DeepSTNPlus.
 - NAS models: ENAS and DARTS.
- □ ST-ResNet+, ST-3DNet+ and DeepSTNPlus+ represent the AutoST enhanced models.

Experiments-Overall Performances

- **D** Effectiveness perspective:
 - AutoST can be applied to a *wide-range* of ST models and steadily improves the performances.
 - DeepSTNPlus+ achieves *state-of-the-arts* results at all scenarios.

Models	Param	RMSE	MAPE
ST-ResNet	0.92M	17.51 ± 0.05	$33.92\% \pm 0.41\%$
ST-ResNet+	3.38M	17.47 ± 0.05	$33.52\% \pm 0.40\%$
ST-3DNet	0.54M	17.82 ± 0.36	$31.04\%\pm 0.02\%$
ST-3DNet+	1.36M	17.37 ± 0.20	$27.77\% \pm 0.02\%$
DeepSTN-ne	0.42M	16.09 ± 0.02	$27.05\% \pm 0.15\%$
DeepSTN-ne+	1.24M	15.97 ± 0.06	$27.72\% \pm 0.14\%$
DeepSTNPlus	0.44M	15.98 ± 0.05	$26.52\% \pm 0.64\%$
DeepSTNPlus+	1.26M	15.88 ± 0.19	$25.97\% \pm 0.65\%$

Models	Cro	owdBJ	Ta	axiJN	TaxiGY		
Models	RMSE	RMSE MAPE		MAPE	RMAE	MAPE	
ST-ResNet	92.27 ± 4.42	$74.24\% \pm 4.53\%$	5.876 ± 0.26	$62.22\%\pm 0.80\%$	2.773 ± 0.10	$56.95\% \pm 1.09\%$	
ST-ResNet+	87.35 ± 4.42	$63.17\% \pm 4.53\%$	5.624 ± 0.06	$72.30\% \pm 1.92\%$	2.521 ± 0.07	$51.69\% \pm 0.59\%$	
ST-3DNet	76.13 ± 2.14	$55.51\% \pm 1.18\%$	5.458 ± 0.19	$58.71\% \pm 2.71\%$	2.574 ± 0.08	$52.71\% \pm 2.27\%$	
ST-3DNet+	62.28 ± 2.68	$36.56\% \pm 3.49\%$	5.103 ± 0.04	$57.11\% \pm 1.54\%$	2.488 ± 0.04	$51.32\%\pm 0.78\%$	
DeepSTN-ne	52.49 ± 0.37	$32.17\% \pm 1.94\%$	4.664 ± 0.05	$45.69\%\pm 0.97\%$	2.175 ± 0.02	$50.81\%\pm 0.20\%$	
DeepSTN-ne+	51.38 ± 0.61	$28.43\% \pm 1.98\%$	4.653 ± 0.20	$46.58\%\pm 0.65\%$	2.169 ± 0.03	$47.61\%\pm 0.06\%$	
DeepSTNPlus	49.76 ± 0.57	$28.60\% \pm 2.75\%$	4.653 ± 0.01	$54.52\%\pm 0.30\%$	2.172 ± 0.06	$50.01\%\pm 0.71\%$	
DeepSTNPlus+	49.09 ± 0.61	$29.08\% \pm 5.80\%$	4.602 ± 0.00	$44.35\%\pm 0.87\%$	2.157 ± 0.01	$49.55\% \pm 0.87\%$	

Experiments-Efficiency and Robustness

Efficiency perspective: AutoST searches faster than existing NAS algorithms

□ Robustness perspective: the proposed model outperforms baselines with most settings.

Experiments-Case Study

- □ The optimal architecture on CrowdBJ has:
 - no connections at first four layers showing the long-range correlation captured by stacked multi-layer convolutions is important.
 - connections at last four layers to fuse the spatial features with neighborhood information.

(a) CrowdBJ

3x3

- □ The optimal architecture on TaxiGY has:
 - a large amount of skip connections among layers indicating that the short-range neighborhood dependency contributes more than global features.

5x5 .

Part 3. More *Spatio-Temporal* AI Applications

Deep Distributed Fusion Network for Air Quality Prediction

KDD 2018

- Background
 - Developing countries are suffering from seriously air pollution problem
 - Air pollution consists of a mixture of particulate matter (PM_{2.5}, PM₁₀) and gaseous species (NO₂, CO, O₃, SO₂)
 - Health alert to young and elderly for breathing problems

- Prediction demand
 - Support government' s policy making
 - Inform people decision making

- Predicting Fine-Grained Air Quality (PM_{2.5})
 - Spatial granularity
 - For each air quality monitoring station
 - Temporal granularity
 - For each hour over the next 48 hours

Challenge

- Multiple influential factors with complex interactions
 - Pollution sources, direct factors and indirect factors
 - Insufficient and inaccurate data
 - Affected by multiply factors simultaneously
 - Effect from one specific factor is not absolute
 - Hard to decide the weight for each factor
 - Difficult to capture the dispersion patterns of air pollution

Challenge

- Dynamic spatio-temporal correlation and sudden changes
 - Urban air changes over location and time significantly
 - AQI drops very sharply in a very short time span
 - Caused by some specific factors (e.g., wind)
 - People pay more attention to special cases than normal cases
 - Data imbalance problem (2.3% within 3 years data in Beijing)

Spatial Transformation

- Air pollution dispersion
 - AQI recorded by monitoring stations can be regarded as second-hand pollution sources
- Spatial correlation
 - Regions with different distance show different impacts varying by distance
 - Closer regions have a finer granularity and farther regions have a coarser granularity
- Scalability
 - Set number of regions as upper bound
 - Overcoming spatial sparsity
 - Train one model with all stations' data

Distributed Fusion

Main Feature vs auxiliary feature

• Main Feature and prediction target come from same domain

Distributed fusion

- Main feature fuses each auxiliary feature in a parallel manner
- Highlight main feature and capture each auxiliary feature' s effect

• Individual influence subnets (FusionNet)

- HW: capture the influence of historical weather
- WF: learn the impact from future weather conditions
- SP: simulate secondary chemical production
- MP: model the effect of time and terrain
- Holistic influence subnet (FusionNet)
 - Learn holistic influence from all factors simultaneously
- Weighted Merge
 - Determine the weight for each factor

$$\hat{\boldsymbol{y}} = Sigmoid(\boldsymbol{y}_{hw} \circ \boldsymbol{w}_{hw} + \boldsymbol{y}_{wf} \circ \boldsymbol{w}_{wf} + \boldsymbol{y}_{sp} \circ \boldsymbol{w}_{sp} + \boldsymbol{y}_{mp} \circ \boldsymbol{w}_{mp} + \boldsymbol{y}_{hi} \circ \boldsymbol{w}_{hi})$$

Embedding

- Transform raw features to a low-dimensional space
 - Learn intra-dynamics of each domain data
 - Capture temporal information

	Dom	ain	Feature	Encoding	Embedding		
	AQIs		PM2.5	6*17	36		
			PM ₁₀	6*1			
			NO ₂	6*1			
	Other Pollutants		SO ₂	6*1	6		
			CO	6*1			
			O ₃	6*1			
	Meteorology		Weather	6*8			
-			Wind direction	6*4			
			Wind speed	6*1	6		
			Humidity	6*1			
			Pressure	6*1			
	Weather Forecast		Weather	k*8			
			Wind direction	k*4	6		
			Wind Strength	k*4			
	Meta Property	Station ID	Beijing	36			
		Time	Season	4	6		
			isWorkday	2	0		
			Hour	4			

Data in Urban Air

- Air quality data
 - From 2,296 stations in 302 Chinese cities
 - Hourly updates
 - Convert concentrations into corresponding AQI based on Chinese AQI standards
- Meteorological data
 - 3,514 cities/districts/stations
 - a district-level (or even finer) granularity
 - Hourly update
- Weather forecasts
 - 2,612 cities/districts
 - Next three days forecast (3-hour segment)
 - Updating frequency: 12-hour

Overall Results

	Method	1-	6h	7-1	-12h 13-24h 24-48h		48h	Sudden Change			
		acc	mae	acc	mae	acc	mae	acc	mae	acc	mae
	ARIMA	0.751	28.3	0.576	52.1	0.458	65.4	0.307	74.6	0.066	112.9
	LASSO	0.790	21.9	0.620	39.7	0.534	48.9	0.452	57.1	0.273	87.2
	GBDT	0.792	21.8	0.629	38.8	0.540	48.0	0.458	56.5	0.321	21.8
	LSTM	0.780	23.1	0.606	41.2	0.491	53.2	0.380	64.8	0.240	90.1
	LSTM-STC	0.794	21.6	0.622	39.6	0.508	51.4	0.396	63.0	0.314	82.5
	DeepST	0.806	20.4	0.633	38.1	0.545	47.5	0.466	55.7	0. 38	79.5
	DJMVST-Net	0.806	20.4	0.638	37.8	0.550	47.4	0.481	53.9	0.419	70.4
	DeepFM	0.808	20.1	0.643	37.3	0.549	47.2	0.474	54.9	0.396	72.3
	DeepSD	0.811	19.7	0.645	37.1	0.551	46.8	0.479	54.3	0.428	69.5
	DeepAir	0.812	19.5	0.656	36.1	0.569	45.1	0.5	52.1	0.471	63.8

 $\operatorname{acc} = 1 - \frac{\sum_{i} |\widehat{y_{i}} - y_{i}|}{\sum_{i} y_{i}}$

 $mae = \frac{\sum_{i} |\widehat{y_{i}} - y_{i}|}{n}$

Online Performance

2.4%, 12.2%, 63.2% relative accuracy improvements on **shortterm, long-term and sudden** changes

Official Prediction

- Advantages beyond Weather-Forecast-Based Method (WFM)
 - Spatial granularity: station vs district
 - Farther predictive capability: 48 vs 12 hours
 - Updating frequency: 1 hour vs 12 hours
 - Need less data sources
 - More accurate

10/1/2014 to 12/30/2016. Beijing Municipal Environmental Monitoring Center (using *WFM*)

	Station Level		Distri	ct Level	Update	Grained	
wethod	acc	mae	acc	mae	Hours	level	
WFM	0.54	54.5	0.64	46.1	12	District	
DeepAir	0.77	26.7	0.86	17.9	1	Station	

CityGuard: Citywide Fire Risk Forecasting Using A Machine Learning Approach

UbiComp 2020

Background

Urban fire cause financial loss, injuries and even deaths.

Center of Fire Statistics¹ shows fire statistics from 34 countries in 2017:

- 3,115,061 fires cause 16,808 deaths and 47,948 injuries.
- > Examples
 - 15, Apr., 2019, a major fire has engulfed the Notre Dame de Paris, destroying priceless treasures.²
 - 12, Aug., 2015, a series of explosions killed 173 people and injured hundreds of others at a container storage station at the Port of Tianjin.³

- ¹ www.ctif.org
- ² https://www.bbc.com/news/world-europe-47941794
- ³ https://en.wikipedia.org/wiki/2015 Tianjin explosions

Fire forecasting is a necessary work to control the risks of fire

Challenges

To address the problem of ranking areas by fire risks, we face 2 main challenges:

1. Temporal

- Internal effects (e.g., historical fire risk).
- External effects
 - Immediate impact (e.g., temperature)
 - Delayed impact (e.g., electronic order)

2. Spatial

- Local spatial attributes (e.g., POIs, human activities, population of area)
- Global spatial dependencies

Architecture

We propose a machine learning model named **NeuroFire** to integrate the temporal and spatial which consists of two-step:

D Temporal fire classification

We use GRU-CRF to combine internal effects (historical risks) and external effects (weather,...)

□ Spatial fire risk forecasting

To lean the rank of regions at one timestamp, we use S-BPR to compare risks of regions

Method

- Leverage RNN to learn temporal representations of urban data
- Integrate the temporal representations into fire risk sequences by CRF.

ŷ

Yt,1 Yt,2 Yt,3 Yt,4 Yt,5

 Y_t

0 0 1 **BPR**

Vt.1

 $y_{t,2}$

 $y_{t,3}$

yt,4

Yt,1 Yt,2 Yt,3 Yt,4 Yt,5 0 0

> 0 0

0 0

0 0

0 0 0

 r_t

0 Yt,5

0

0

0

0

Datasets

- *Fires dataset* is collected in a city, China during a 59-month period (Jan-2014~Nov-2018):
 - Location (latitude, longitude)
 - Time
- *POI*
- Weather
 - Temperature
 - Humidity

Metrics: Recall & F-1 score & AUC & MAE

Experiments

Results

Our model performs better than other 9 baselines:

- The effectiveness of temporal factors: Methods using GRU perform better than LASSO, CRF, LR and SVM.
- The effectiveness of historical sequence of fire risks: GRU-CRF performs better than GRU-LR
- The importance of spatial dependence: our model using S-BPR performs better than DeepST due to the sparsity of fires

Model	Recall	F1-score	AUC	MAE
LASSO	0.202±0.306	0.025 ± 0.014	0.454±0.075	0.411±0.265
CRF	0.263±0.075	0.349 ± 0.071	0.629±0.037	0.807±0.005
LR	0.333±0.59	0.324±0.059	0.659±0.052	0.249 ± 0.036
LR-P	0.179 ± 0.188	0.121±0.058	0.573±0.072	0.162±0.019
SVM	0.540±0.273	0.087±0.038	0.56±0.096	0.498±0.224
SVM-P	0.308±0.066	0.227±0.085	0.629±0.031	0.267 ±0.097
GRU-LR	0.342±0.101	0.365 ± 0.102	0.666±0.076	0.146 ± 0.0139
GRU-CRF	0.284±0.111	0.387 ± 0.071	0.673±0.06	0.100 ± 0.003
DeepST	0.532±0.070	0.310 ± 0.080	0.740±0.037	0.193±0.092
NeuroFire	0.558 ± 0.134	0.400±0.067	0.763±0.045	0.094±0.01

Visualization

- > LASSO, CRF and SVM didn't perform well on the ranking problem.
- > DeepST seems discriminating in spatial, it performs worse in forecasting.

The deeper color in a grid, the higher risk is forecasted.

- 1. Massive ST data and application scenarios \rightarrow ST Deep Learning/AI
- 2. ST Neural Networks
 - Data transform + CNN/RNN/GNN/Attention
 - ST Point Data, ST Gridded Data, ST Networks(Graphs), ST Sequence Data
- 3. Advanced ST Neural Networks

□ST-MetaNet, AutoST

4. More Spatio-Temporal AI Applications: Air, Fire, ...

- Ting Li, Junbo Zhang, et al. AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction, KDD 2020
- Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, Junbo Zhang. Urban Traffic Prediction from Spatio-Temporal Data using Deep Meta Learning. KDD 2019
- Junkai Sun, Junbo Zhang, et al. Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View Graph Convolutional Networks, IEEE TKDE, 2020 (CCF A类)
- Zheyi Pan, Wentao Zhang, Yuxuan Liang, Weinan Zhang, Yong Yu, Junbo Zhang, Yu Zheng. Spatio-Temporal Meta Learning for Urban Traffic Prediction, *IEEE TKDE*, 2020 (CCF A类)
- Junbo Zhang, et al. Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning. IEEE TKDE, 2019. (CCF A类)
- Zheyi Pan, Zhaoyuan Wang, Weifeng Wang, Yong Yu, Junbo Zhang, Yu Zheng, Matrix Factorization for Spatio-Temporal Neural Networks with Applications to Urban Flow Prediction, CIKM 2019
- Junbo Zhang, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artificial Intelligence, 2018. (CCFA类)
- Junbo Zhang, et al. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. AAAI, 2017.
- **Junbo Zhang**, et al. DNN-Based Prediction Model for Spatial-Temporal Data. ACM SIGSPATIAL, 2016.

- Qianru Wang, Junbo Zhang, et al. CityGuard: Citywide Fire Risk Forecasting Using A Machine Learning Approach. ACM UbiComp 2020
- Yuxuan Liang, Kun Ouyang, Yiwei Wang, Ye Liu, Junbo Zhang, et al. Revisiting Convolutional Neural Networks for Citywide Crowd Flow Analytics. ECML-PKDD 2020
- Yuxuan Liang, Kun Ouyang, Lin Jing, Sijie Ruan, Ye Liu, Junbo Zhang, et al. UrbanFM: Inferring Fine-Grained Urban Flows. KDD 2019
- Xiuwen Yi, Zhewen Duan, Ting Li, Junbo Zhang, et al. CityTraffic: Modeling Citywide Traffic via Neural Memorization and Generalization Approach, CIKM 2019
- Xiuwen Yi, Junbo Zhang, et al. Deep Distributed Fusion Network for Air Quality Prediction, KDD 2018
- Chao Huang, Junbo Zhang, et al.. DeepCrime: Attentive Hierarchical Recurrent Networks for Crime Prediction. CIKM 2018.
- Yuxuan Liang, Songyu Ke, Junbo Zhang, et al. GeoMAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction. IJCAI 2018.
- Dong Wang, Junbo Zhang, et al. When Will You Arrive Estimating Travel Time Based on Deep Neural Networks. AAAI 2018
- Xiuwen Yi, Yu Zheng, Junbo Zhang, et al. ST-MVL: Filling Missing Values in Geo-Sensory Time Series Data. IJCAI 2016

Call For Papers

https://dl.acm.org/journal/tist/cfp

ACM Transactions on Intelligent Systems

and Technology Special Issue on

"Deep Learning for Spatio-Temporal Data"

ACM Transactions on Intelligent Systems and Technology

Search with

Home > ACM Journals > ACM Transactions on Intelligent Systems and Technology

ACM Transactions on Intelligent Systems and Technology

Association for Computing Machine

ACM Transactions on Intelligent Systems and Technology (TIST) publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a ... (More)

Topics of interest include but not limited to:

- Heterogeneous spatio-temporal data fusion with deep learning
- Deep spatio-temporal data representation learning
- rajectory data mining with deep learning
- Anomaly detection in spatio-temporal data with deep learning
- Deep learning based urban traffic prediction models
- Spatio-temporal crowdsourcing with deep learning
- Interpretable deep learning models for spatio-temporal data mining
- Novel deep learning models for mining noisy and sparse spatio-temporal data
- Deep learning models for novel applications based on spatio-temporal data
- · Deep learning based spatio-temporal data mining for smart city
- Deep learning for spatio-temporal control and optimization
- · Spatio-temporal data management with deep learning
- · Spatio-temporal privacy and security with deep learning
- Spatio-temporal knowledge guided deep learning
- Spatio-temporal reasoning, uncertainty, and causality with deep learning

Tentative submission deadline of the Special Issue.

- Otc 30, 2020: Deadline for paper submissions

https://dl.acm.org/pb-assets/static_journal_pages/tist/cfps/tist-si-cfp-08-2020-spatio-temporal-data-1598567859617.pdf

THANKS!

Q & A

时空数据高分辨技术

时空数据也存在数据稀疏的问题, 而细粒度的监控系统需要部署大规 模的设备和传感器,意味着系统维 护大量的资金支持。

一种基于深度神经网络的模型 UrbanFM (Urban Flow Magnifier), 能够利用粗粒度城市人流量数据准 确地还原细粒度人流量数据。

UrbanFM

粗粒度城市流量图

细粒度城市流量图

Yuxuan Liang, et.al. UrbanFM: Inferring Fine-Grained Urban Flows. KDD2019

Challenges

- Spatial correlations
 - Spatial hierarchy
 - Remote influence

Y. Liang, K. Ouyang, L. Jing, S. Ruan, Y. Liu, J. Zhang, et al. UrbanFM: Inferring Fine-Grained Urban Flows, KDD 2019

Challenges

- External factors
 - Meteorology
 - Time
 - Event

Framework

- Inference network
- External factor fusion

