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Weather forecasting is an attractive yet challenging task due to its significant impacts on human 
life and the intricate nature of atmospheric motion. Deep learning-based techniques, utilizing 
abundant observations, have gained popularity in recent years. However, many existing methods 
mainly explore temporal patterns of meteorological variables while neglecting the interactions 
between variables across regions. To address this limitation, we propose HiSTGNN, a novel 
Hierarchical Spatio-temporal Graph Neural Network, which enables accurate predictions of 
multiple variables and stations over multiple time steps. HiSTGNN incorporates an adaptive 
graph learning module that constructs a self-learning hierarchical graph, comprising a global 
graph representing regions and a local graph capturing meteorological variables for each region. 
By leveraging graph convolution and gated temporal convolution with a dilated inception 
as the backbone, we effectively capture hidden spatial dependencies and diverse long-term 
meteorological trends. Additionally, we introduce dynamic interactive learning to facilitate 
bidirectional information between the two-level graphs. Experiments on three real-world 
meteorological datasets demonstrate the superiority of our proposed method compared to seven 
well-known baselines, including convolutional neural networks, recurrent neural networks, and 
spatio-temporal forecasting methods. Notably, HiSTGNN achieves remarkable improvements over 
the state-of-the-art weather forecasting method on the WD_BJ dataset, with a 4.25% decrease in 
MAE and a 5.34% decrease in RMSE.

1. Introduction

Weather forecasting plays a profound role in various aspects of human livelihood, enabling informed decision-making in agri-

culture, transportation, energy, and ensuring public safety [1]. The discipline has evolved significantly since its early beginnings 
when Robert FitzRoy, a British naval officer in the 19th century, utilized telegraph lines to gather data on atmospheric pressure 
and wind direction [2]. Today, weather forecasting has transformed into a sophisticated field that relies on diverse data sources and 
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computational models to provide precise and reliable predictions. Despite the predominance of numerical weather prediction (NWP), 
limitations arising from the existing theory of atmospheric physics and challenges in solving differential equations can contribute to 
inaccurate predictions [3].

In the era of big data, data-driven methods have garnered considerable attention, with deep learning-based techniques emerging 
as prominent solutions. In particular, deep learning-based techniques, known for their ability to extract high-dimensional repre-

sentations from historical observations, have exhibited remarkable computational efficiency and forecasting [4]. This study focuses 
on weather forecasting using data collected from ground weather stations. Specifically, we address the 3M task, which involves 
simultaneous predictions of multiple meteorological variables for multiple weather stations over multiple future time steps.

Existing studies approach this problem by treating it as time series forecasting and spatio-temporal forecasting tasks. The former 
focuses on analyzing and capturing the temporal dependencies of meteorological variables within a single selected ground weather 
station [5–7]. Meanwhile, the latter takes into account the spatial correlation of meteorological variables across multiple regions [8–

10]. However, these studies still have limitations in capturing the intricate interdependencies within the Earth’s atmospheric system. 
They fail to effectively capture the spatio-temporal interactions between meteorological variables at both local and regional scales.

Crucially, the interactions between meteorological variables play a crucial role in weather patterns and forecasting. For instance, 
temperature and humidity exhibit a strong mutual influence. Warmer air can hold more moisture, leading to higher humidity levels. 
Conversely, as humidity increases, it affects the rate of temperature change and can influence cloud formation and precipitation 
patterns [11]. These correlations extend beyond specific locations and encompass wider regions due to the dynamic nature of the 
atmosphere. Unraveling these intricate interactions and capturing the nonlinear temporal dynamics is crucial for achieving accurate 
weather forecasting, albeit it poses greater challenges.

To handle these challenges, we propose a Hierarchical Spatio-temporal Graph Neural Network for weather forecasting, named 
HiSTGNN. HiSTGNN employs a hierarchical graph to capture the interactions between meteorological variables across different 
regions. The hierarchical graph consists of a global graph and local graphs, where each node in the local graph represents a meteo-

rological variable observed from a single weather station, and edges represent the correlations between variables. The global graph 
comprises nodes corresponding to the local graphs, facilitating information transfer between regions. To construct the hierarchical 
graph, we introduce an adaptive graph learning module to learn the structure from data. Furthermore, we design a spatio-temporal 
learning module based on the dilated inception network and graph convolutional network. This module analyzes a sequence of hi-

erarchical graph snapshots, forming a hierarchical spatio-temporal graph, to capture long-term spatio-temporal dependencies across 
variables and regions. To enable bidirectional information flow between the two-level graphs, we introduce a dynamic interactive 
learning module. This module aggregates the representation of a local graph into the corresponding node in the global graph and 
facilitates information diffusion in the opposite direction.

HiSTGNN follows an end-to-end approach, optimizing all parameters through gradient descent. In summary, the contributions of 
this paper can be outlined as follows:

• This study pioneers the exploration of a hierarchical graph-based perspective combined with graph neural networks (GNNs) for 
deep learning in weather forecasting.

• We propose an adaptive hierarchical graph learning module that effectively captures hidden correlations among meteorolog-

ical variables in different regions. Importantly, our method avoids the need for explicit graph structures guided by domain 
knowledge.

• Our novel HiSTGNN enables end-to-end weather forecasting, simultaneously learning feature representations and graph struc-

tures from weather data within an iterative framework.

• Extensive evaluations of HiSTGNN on three real-world weather datasets confirm its effectiveness, surpassing seven baselines, 
including convolutional neural networks (CNNs)/recurrent neural networks (RNNs)/GNNs and traditional time series methods.

2. Related work

Related work in this paper can be classified into two categories: weather forecasting and hierarchical graph neural networks.

2.1. Weather forecasting

Weather forecasting plays an important role in human livelihood, aiming to provide accurate and timely predictions of weather 
status. This technique can be divided into three categories based on underlying methodologies: Numerical Weather Forecasting, 
Traditional Machine Learning, and Deep Learning. Numerical Weather Forecasting models [12,3] utilize complex mathematical 
equations to simulate the physical processes of the atmosphere. By dividing the atmosphere into a three-dimensional grid, these 
models employ various differential equations to forecast the evolution of meteorological variables over time. This method tends 
to suffer from the issues of substantial computing resources and unstable modeling under inappropriate initial solutions. Recent 
research focuses on boosting prediction and post-processing to improve the reliability of weather forecasting [13,14]. Traditional 
Machine Learning and Deep Learning are data-driven methods that exploit meteorological patterns from historical weather data to 
learn an input-output mapping function, where the input is past weather observation data and the output is the weather forecast. 
Traditional machine learning treats weather forecasting as time series forecasting [4]. Autoregressive integrated moving average 
(ARIMA) [15,16] models the linear temporal dependency within weather data by combining autoregressive, differencing, and moving 
2

average components. Support vector regression (SVR) [17] uses kernel functions to transform weather data into a high-dimensional 
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Table 1

Frequently used notations.

Notation Description

𝑆 number of weather stations

𝑀 number of meteorological variables

𝑑 dimensionality of features

𝑃 number of input time steps

𝑄 number of forecasting time steps

𝑥𝑡 ∈ℝ𝑆×𝑀 observed values of 𝑀 meteorological variables in 𝑆 weather stations at time 𝑡

 graph  = ( ,) with node set  , edge set 

𝐻 ,𝐺,𝐿 hierarchical graph, global graph and local graph

 ∈ℝ𝑁×𝑁 adjacency matrix of graph with 𝑁 nodes

𝑙 hidden feature of HiSTGNN at 𝑙th layer

space to find a hyperplane that minimizes the prediction error. Recently, deep learning methods have shown a significant advantage 
in weather forecasting. DUQ [5] utilizes an encoder-decoder framework with RNNs and employs a negative log-likelihood error loss 
function for point forecasting and uncertainty quantification. CNNs-based methods [6,7,18] utilize dilated convolution and causal 
convolution to capture the various and long-term temporal dependencies. However, these purely temporal modeling methods lack 
spatial interactions between variables and between regions. For capturing spatio-temporal dependencies, Deep hybrid model [19]

uses an ensemble of boosted decision-tree learners and spatial interpolation with a deep belief network [20] to respect temporal 
and spatial dependencies among weather variables. ConvLSTM [8] treats precipitation nowcasting as a spatio-temporal forecasting 
problem and combines CNNs and LSTMs to capture spatio-temporal hidden correlations in radar echo data simultaneously. A hybrid 
neural model [21] combining CNNs, RNNs, and attention mechanism, is utilized to extract the spatial and temporal correlation 
features for wind speed forecasting. More recently, many studies focus on applying spatio-temporal graph neural networks in spatio-

temporal forecasting tasks like traffic prediction [22], taxi demand prediction [23], driver maneuver anticipation [24] and air quality 
analysis [25], in which GNNs is to capture hidden spatial dependency with graph structures representing relationships between 
variables and RNNs or CNNs is to model hidden temporal dependency. In the field of weather forecasting, various studies have 
explored the application of GNNs. For instance, InstGCNs [26] using RNNs and GNNs to cope with inherent nonlinearity and spatio-

temporal correlation in the weather radar data improves Short-term quantitative precipitation forecasting. GE-STDGN [27] combines 
graph convolution and evolutionary multi-objective optimization to improve spatio-temporal weather forecasting. MasterGNN [28]

adopts multi-task learning with a heterogeneous graph neural network for air quality and weather predictions. Additionally, Global 
weather forecasting method [29] utilizes GNNs to aggregate information on the sphere over a physically-uniform neighborhood of 
latitude-longitude grid. DeepSphere [9] and CLCRN [10] also introduce graph convolution on spherical weather data. GraphCast [30]

employs GNNs to achieve message passing on a multi-mesh graph representation derived from the mapping of latitude-longitude 
grid weather observations for medium-range weather forecasting. Notably, these researches on the application of GNNs for weather 
forecasting focus on spatial relationship modeling between regions while neglecting the interplay between regions and meteorological 
variables.

2.2. Hierarchical graph neural networks

Existing GNNs encounter a significant constraint due to their flat architectures, which restricts their ability to aggregate infor-

mation hierarchically. In response, a hierarchical graph neural network [31] was introduced for node classification tasks, generating 
hierarchical representations of a graph through pooling operations. Additionally, researchers in the field of traffic forecasting have 
explored hierarchical graph convolution networks, treating road networks and regional networks as a hierarchical graph to model 
spatial correlations [32]. However, these approaches exhibit limitations in information transfer, lacking bidirectional communica-

tion from top to bottom or bottom to top, which may result in information loss. In contrast to prior methods, our approach tackles 
these limitations by leveraging adaptive graph learning in an end-to-end framework. Our method establishes bidirectional informa-

tion passing between the variable-level graph and the station-level graph. This comprehensive information exchange ensures the 
preservation and exchange of valuable insights between different graph levels.

3. Problem formulation

In this paper, we present the formalization of weather forecasting as a spatio-temporal forecasting task that involves predicting 
multiple meteorological variables for multiple weather stations over multiple future time steps. The mathematical notation used to 
describe our method is summarized in Table 1.

3.1. Definitions

Definition 1 (Meteorological observations). Consider 𝑆 spatially distributed ground weather stations, 𝑥𝑡 ∈ℝ𝑆×𝑀 denotes the observa-

tion of 𝑀 meteorological variables at time step 𝑡, where the meteorological variables are the state of the atmosphere and the weather 
3

conditions in the corresponding regions.
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Fig. 1. Hierarchical graph modeling the correlations between meteorological variables in different weather stations (i.e., regions).

Definition 2 (Graph). Let  = ( , ) denote a graph, where  is a set of 𝑁 nodes and  is a set of edges. The edges measure the 
correlations between nodes and can be mathematically expressed as an adjacent matrix  ∈ℝ𝑁×𝑁 , where 𝑖,𝑗 denotes the correlation 
between nodes 𝑣𝑖 and 𝑣𝑗 .

Definition 3 (Hierarchical graph). Let 𝐻 = {𝐺, {𝑖𝐿}
𝑆
𝑖=1} denote a hierarchical graph, as shown in Fig. 1(a), where 𝐺 denotes the 

global graph and 𝐿 denotes the local graph. We use 𝐺 to represent the correlations between weather stations and use 𝑖
𝐿

to 
represent the correlations between meteorological variables that are observed in 𝑖th weather station. In the following, we use 𝐺 and 
𝐿 as subscripts to distinguish global and local graphs.

Definition 4 (Hierarchical spatio-temporal graph). Let {𝑡𝑖
𝐻
}𝑖=1 denote a series of snapshots of the hierarchical spatio-temporal graph, 

as shown Fig. 1(b), which represents the consecutive changes of multiple meteorological variables in multiple regions.

3.2. Problem statement

Given historical meteorological data over 𝑃 time steps  = {𝑥𝑡1 , 𝑥𝑡2 , ⋯ , 𝑥𝑡𝑃 } ∈ℝ𝑆×𝑀×𝑃 , our goal is to predict the states of multiple 
meteorological variables for all weather stations over the next consecutive 𝑃 time steps ̂ = {𝑥̂𝑡𝑃+1 , ̂𝑥𝑡𝑃+2 , ⋯ , ̂𝑥𝑡𝑃+𝑄}. More generally, 
the auxiliary features also can be coupled with the observations, such as station ID and time of the day. Assuming the inputs 
 ∈ℝ𝑆×𝑀×𝑃×𝑑 , the weather forecasting problem is defined as follows,

{𝑥̂𝑡𝑃+1 , 𝑥̂𝑡𝑃+2 ,⋯ , 𝑥̂𝑡𝑃+𝑄} =  ({𝑥𝑡1 , 𝑥𝑡2 ,⋯ , 𝑥𝑡𝑃 }), (1)

where  is the mapping function from  to  we aim to learn.

4. Methodology

In this section, we begin by presenting the overarching architecture of HiSTGNN. Subsequently, we provide a detailed description 
of each individual component.

4.1. Overall architecture

Fig. 2 visually represents the hierarchical and iterative architecture of HiSTGNN, which is specifically designed to extract spatio-

temporal features from meteorological variables and regions. The framework is comprised of three main components: adaptive graph 
learning module (AGL), spatio-temporal learning module (STL), and dynamic interactive learning module (DIL). To discover the implicit 
correlations between meteorological variables and weather stations, AGL module constructs self-learning local graphs and a global 
graph in the form of graph adjacency matrices, which are later fed into graph neural networks. STL module consists of a graph 
convolutional network and a temporal convolutional network with dilated inception. This combination effectively captures spatial 
and temporal dependencies within the data. To build the bidirectional information passing between the two-level graphs, DIL module 
is divided into information fusion layer and information diffusion layer, which are interleaved with the spatio-temporal learning module 
of local graphs and global graph. Further details of HiSTGNN are presented in the subsequent sections.

4.2. Adaptive graph learning module

AGL module learns a hierarchical graph from observed data to capture the hidden dependencies between weather variables both 
locally and across multiple regions. The construction of such a hierarchical graph depends on assessing the correlation between 
4

nodes within variable-level graphs (i.e., local graphs), and nodes within the station-level graph (i.e., the global graph). Existing 
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Fig. 2. The overall framework of HiSTGNN. The Conv is a 1 ×1 standard convolution to project the inputs to latent space. AGL is the adaptive graph learning module to 
generate the adjacency matrix of both local graphs and the global graph. STL is the spatio-temporal learning module to capture spatial and temporal dependencies. The 
information fusion layer and information diffusion layer are used to build interactions between two-level graphs. The output module is a 1 × 1 standard convolution 
to output desired meteorological variables and future time steps. The hyper-parameter 𝐿 represents the number of stacked layers.

studies mainly measure the correlation of weather variables between regions by Euclidean distance [10,28]. However, this may 
restrict the representing capability of capturing spatial dependencies due to the fixed graph structure. To adaptively learn the non-

linear correlations between nodes, we employ embedding technology and similarity measurement to construct graph adjacency 
matrices, motivated by the graph structure learning [33]. We first randomly initialize vector representations for nodes, then measure 
the similarity between nodes’ vectors to generate a graph adjacency matrix. The node representations are optimized based on the 
performance of the downstream task. Specifically, AGL can be formulated as follows,

 = 𝑡𝑎𝑛ℎ(𝛼 ⋅𝑋), (2)

1 =  (𝐸11),2 =  (𝐸22), (3)

 =1
𝑇
2 −2

𝑇
1 , (4)

 =𝑅𝑒𝐿𝑈 ( ()), (5)

where  is a tanh activation function with a scalar 𝛼 adjusting the input 𝑋 to control the saturation rate of the activation function, 
The trainable node embeddings 𝐸1 ∈ ℝ𝑁×𝑑 and 𝐸2 ∈ ℝ𝑁×𝑑 are initialized randomly then continuously optimized during training, 
𝑁 and 𝑑 are the number of nodes and embedding dimensionality. 1 and 2 are trainable linear transformation parameters. 
is a skew-symmetric matrix, thus − is equal to 𝑇 and the diagonal values are zero.  ∈ ℝ𝑁×𝑁 turns an asymmetric matrix to 
represent the uni-direction correlation through the non-negative linear rectification unit.

The global graph and the local graphs can be constructed by Equation (2)-(5), denoted as 𝐺, 1
𝐿
, 2

𝐿
, ⋯ , 𝑆

𝐿
, where the global 

node embedding {𝐸𝐺
1 , 𝐸

𝐺
2 } ∈ ℝ𝑆×𝑑𝐺

 , the local node embedding {𝐸𝐿
1 , 𝐸

𝐿
2 } ∈ ℝ𝑀×𝑑𝐿

 , the global adjacency matrix 𝐺 ∈ ℝ𝑆×𝑆 , and 
the local adjacency matrix 𝑖

𝐿
∈ ℝ𝑀×𝑀, 1 ≤ 𝑖 ≤ 𝑆. Besides, to enable information transfer across different regions, we utilize the 

local graph representation as the node feature representation within the global graph. Detailed explanations of this module will be 
5

provided in Section 4.4.
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4.3. Spatio-temporal learning module

In this subsection, we present STL module, which is designed to capture the temporal dependency of meteorological variables and 
spatial dependency between variables across regions. STL module primarily comprises two components: gated temporal convolution 
(GTC) and spatial graph convolution (SGC). The details of both components are described as follows.

4.3.1. Gated temporal convolution

GTC component is specifically designed to capture temporal patterns in long sequences and multi-scale time ranges, aligning with 
the temporal dimension of a hierarchical spatio-temporal graph. While RNNs-based networks are well-suited for modeling sequential 
features due to their inherent recursive nature, they have limitations as they restrict the current state to depend solely on the previous 
state, which can result in increased computational costs. To overcome these limitations, Dilated CNN [34] introduces a dilation factor 
that determines the number of steps skipped in a standard convolution operation. This approach exponentially expands the receptive 
field of the network, enabling it to effectively handle long-term sequences. Dilated CNN has demonstrated promising performance in 
tasks such as audio generation. Mathematically, assuming the dilated convolution with 𝑘 layers of kernel size 𝑐 and dilation factor 
exponentially increasing by rate 𝑑 (𝑑 > 1) for each layer, the size of receptive field can be represented as follows,

𝑅𝐹𝑘 = 1 + (𝑐 − 1)(𝑑𝑘 − 1)∕(𝑑 − 1). (6)

It can capture longer sequences without increasing the scale of model parameters, compared to the canonical convolution.

Furthermore, it is widely recognized that meteorological changes exhibit distinct variation patterns across different time scales. 
For instance, temperature is influenced by daylight, typically following a rising and falling trend. Within a day, there can also 
be various trends observed during different time periods. Motivated by the inception network, which serves as the backbone of 
GoogLeNet [35,33] and achieves competitive performance in computer vision tasks by concatenating outputs from convolutions 
with different filter kernel sizes, we integrate the concept of dilated inception. By combining Dilated CNN and inception, we adopt 
dilated inception as the fundamental unit of the gated temporal convolution, enabling effective modeling of long and diverse temporal 
dependencies. Formally, considering the transformed high-dimensional hidden feature of layer 𝑙, denoted as 𝑙 , the output of dilated 
inception can be defined as follows,

ℎ𝑙

= 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓𝑑

1×𝑐1
(𝑙), 𝑓 𝑑

1×𝑐2
(𝑙),⋯ , 𝑓 𝑑

1×𝑐𝑛
(𝑙)), (7)

where 𝑓 represents the convolutional operator, 𝑑 is the dilation factor, 𝑛 and 𝑐𝑛 denote the number of kernel and corresponding 
kernel size.

Moreover, for controlling the information passing to the next layer, GTC adopts a gated activation unit, which integrates two 
dilated inception layers as the final temporal output, formulated as follows,

𝑙

= 𝑡𝑎𝑛ℎ(ℎ𝑙


)⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(ℎ𝑙


), (8)

where tanh and sigmoid are tangent hyperbolic and sigmoid activation functions, respectively. ⊙ is the Hadamard product, and 𝑙


is the output of temporal convolution of 𝑙th layer. We denote the temporal features of the local spatio-temporal graph and global 
spatio-temporal graph as 𝑙

𝐿𝑗 ,
and 𝑙

𝐺,
, respectively.

4.3.2. Spatial graph convolution

In order to capture the underlying spatial features between meteorological variables and regions, we employ SGC to effectively 
model these spatial features. Through adaptive learning of local and global graphs, SGC enables the extraction of important spatial 
information. The graph convolution operation facilitates the learning of node representations by aggregating features from neigh-

boring nodes. First, we present the mathematical form of the graph convolution layer, where its depth-wise propagation rule can be 
defined as follows,

𝐿𝑟𝑚 = 𝐷̃−1𝐴, (9)


𝑙,(𝑑+1)


= 𝛽𝑖𝑛 + (1 − 𝛽)𝐿𝑟𝑚
𝑙,(𝑑)


. (10)

Here 𝐿𝑟𝑚 is the normalized laplacian, 𝐴 =𝐴 + 𝐼 is the adjacency matrix with self-connections, 𝐼 is the identity matrix, 𝐷̃ =
∑

𝑗 𝐴𝑖𝑗 is 
the degree matrix, 𝛽 is a hyperparameter to keep the ratio from original information, 𝑖𝑛 represents the input temporal features of the 
𝑙th local and global gated temporal convolutions. 𝑙,(𝑑)

𝑆
denotes the features of nodes at 𝑑th depth of GCN after spatial information 

aggregation. To further capture the information diversities between different depths of GCN, we utilize trainable parameter weight 
 to filter information, which can be formulated as follows,

𝑙

=

𝐾∑
𝑖=0


𝑙,(𝑖)


 𝑖, (11)

where 𝐾 is the depth of spatial graph convolution. Considering the inflow information and outflow information of each node, the 
spatial features are represented by combining two graph convolution layers with the learned adjacency matrix and its transpose. 
6

Correspondingly, 𝑙
𝐿,

and 𝑙
𝐺,

can denote the spatial features of the local and global spatio-temporal graph.
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4.4. Dynamic interactive learning module

To capture the interaction of spatio-temporal features between local graphs and the global graph, we introduce DIL module. This 
module addresses the information passing between the two-level graphs through a fusion process and a diffusion process, facilitating 
information transfer. DIL module comprises an information fusion layer and an information diffusion layer, as illustrated in Fig. 2. 
These layers are interleaved with the spatio-temporal learning module of the local graph and the global graph.

4.4.1. Information fusion layer

The initial status of nodes in each local graph is determined by the observations of meteorological variables. However, the nodes 
in the global graph are virtual and lack explicit observed data. To address this problem, we adopt a simple yet effective strategy by 
fusing the nodes’ information from the corresponding weather station to represent the node’s hidden status in the global graph. This 
fusion is achieved through average pooling, which aggregates the nodes’ hidden representations. Given the hidden features output 
from the spatio-temporal learning module of 𝑖th local graph in the 𝑙th layer, denoted as 𝑙

𝐿,𝑖
, the information fusion of the 𝑙th layer 

of the network can be formulated as follows,

𝑙
𝐺,𝑖

= 1
𝑀

𝑀∑
𝑗=1

𝑙
𝐿𝑖,𝑗

(12)

𝑙
𝐺
= 𝑐𝑜𝑛𝑐𝑎𝑡(𝑙

𝐺,1∶𝑆 ), (13)

where 𝑙
𝐺,𝑖

denotes the feature of 𝑖th node of the global graph, 𝑆 is the number of nodes of the global graph, i.e., the number of 
weather stations.

4.4.2. Information diffusion layer

The information diffusion aims to propagate the spatio-temporal features from the global graph to the local graphs. To accomplish 
this, we begin by expanding the feature dimension of the global graph-level output by inserting a new axis and replicating it for each 
weather station. Next, we employ a gate mechanism to control the extent of information flow directed towards the local graphs. The 
information diffusion operation can be mathematically expressed as follows,

𝑙+1 = 𝑡𝑎𝑛ℎ(𝑙
𝐺
⊗ 𝟏𝑀)⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑙

𝐺
⊗ 𝟏𝑀), (14)

where ⊗ is the Kronecker product, 𝟏𝑀 denotes a tensor of size 1 × 1 × 1 ×𝑀 filled with ones. 𝐻𝑙+1 is the input features of the next 
layer as the updated local graph features.

4.5. Output module

To alleviate the vanishing gradient of the multi-layer network and make the most of information from various stages, we employ 
the skip connection to integrate the features of the output of all layers. Then, the output module consists of two 1 × 1 standard 
convolutional layers, and the number of output channels is set as the forecasting time steps to output prediction with our desired 
time dimension.

4.6. Learning algorithm

Let Θ represent all the training parameters in HiSTGNN. These parameters are learned by minimizing the following mean absolute 
error (MAE) loss function between the ground truth  and prediction ̂ , which can be written as

𝑎𝑟𝑔𝑚𝑖𝑛
Θ

 = 1
𝑁 ⋅𝑆 ⋅𝑀 ⋅𝑄

𝑁∑
𝑖=1

𝑆∑
𝑗=1

𝑀∑
𝑚=1

𝑄∑
𝑡=𝑃+1

|̂𝑖,𝑗,𝑚,𝑡 −𝑖,𝑗,𝑚,𝑡| (15)

where 𝑁, 𝑆, 𝑀, 𝑄 are the number of samples, weather stations, meteorological variables, and future time steps. Furthermore, we 
summarize the training of HiSTGNN in Algorithm 1.

5. Experiments

In this section, we evaluate HiSTGNN on multi-step weather forecasting using three real-world weather datasets from different 
climates to justify our design solutions. We first introduce the relevant experimental settings, including datasets, evaluation metrics, 
comparison methods, and hyperparameter settings. Then we present the experimental results and analysis in detail.

5.1. Experimental settings

5.1.1. Datasets

To enable reliable assessments for multi-variable and multi-station weather forecasting, we employ three public real-world com-
7

petition weather datasets.
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Algorithm 1 Training of HiSTGNN Algorithm.

Input: The dataset , batch size 𝑁 , the number of layers of HiSTGNN 𝐿, the number of weather stations 𝑆, the number of meteorological variables 𝑀 , historical 
step size 𝑃 , forecasting horizon size 𝑄, the dimensionality of input feature 𝑑.

Output: HiSTGNN model.

1: initialize model parameters Θ
2: repeat

3: sample a batch ( ∈ℝ𝑁×𝑆×𝑀×𝑃×𝑑 ,  ∈ℝ𝑁×𝑆×𝑀×𝑄) from 
4: compute {1

𝐿
, ⋯ , 𝑆

𝐿
} ∈ℝ𝑀×𝑀 , 𝐺 ∈ℝ𝑆×𝑆 ⊳ build adjacency matrices for local graphs and the global graph

5: 0 = 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑛𝑣(), 𝑠𝑘𝑖𝑝 = 𝑠𝑘𝑖𝑝_𝑐𝑜𝑛𝑣() ⊳ 0 ∈ℝ𝑁×𝐶res×𝑀×𝑃×𝑆 , 𝑠𝑘𝑖𝑝 ∈ℝ𝑁×𝐶skip×𝑀×𝑃×𝑆

6: for 𝑖 ← 1 to 𝐿 do

7: for 𝑗 ← 1 to 𝑆 do

8: 𝑖
𝐿𝑗 ,

=𝐺𝑇𝐶(𝑖−1
(∶,∶,∶,∶,𝑗)) ⊳ 𝑖

𝐿𝑗 ,
∈ℝ𝑁×𝐶gated×𝑀×(𝑃−𝑅𝐹 𝑖 ) , GTC is the gated temporal convolution, 𝐿𝑗 denotes the 𝑗th local graph

9: 𝑖
𝐿𝑗 ,

= 𝑆𝐺𝐶(𝑖
𝐿𝑗 ,

, 𝑗

𝐿
) ⊳ 𝑖

𝐿𝑗 ,
∈ℝ𝑁×𝐶gated×𝑀×(𝑃−𝑅𝐹 𝑖 ) , SGC is the spatial graph convolution

10: 𝑠𝑘𝑖𝑝 =𝑠𝑘𝑖𝑝 + 𝑠𝑘𝑖𝑝_𝑐𝑜𝑛𝑣(𝑐𝑜𝑛𝑐𝑎𝑡(𝑖
𝐿1∶𝑆 ,

)) ⊳ 𝑐𝑜𝑛𝑐𝑎𝑡(𝑖
𝐿1∶𝑆 ,

) ∈ℝ𝑁×𝐶gated×𝑀×(𝑃−𝑅𝐹 𝑖 )×𝑆

11: 𝑖
𝐺,𝑗

= 1
𝑀

∑𝑀

𝑘=1 
𝑖
𝐿𝑗 ,(∶,∶,𝑘,∶)

⊳ 𝑖
𝐺,𝑗

∈ℝ𝑁×𝐶gated×1×(𝑃−𝑅𝐹 𝑖 ) , average pooling for information fusion

12: 𝑖
𝐺
= 𝑐𝑜𝑛𝑐𝑎𝑡(𝑖

𝐺,1∶𝑆 ) ⊳ 𝑖
𝐺
∈ℝ𝑁×𝐶gated×𝑆×(𝑃−𝑅𝐹 𝑖 )

13: 𝑖
𝐺,

=𝐺𝑇𝐶(𝑖
𝐺
) ⊳ 𝑖

𝐺,
∈ℝ𝑁×𝐶gated×𝑆×(𝑃−𝑅𝐹 𝑖 ) , the temporal features of the global-level graph

14: 𝑖
𝐺,

= 𝑆𝐺𝐶(𝑖
𝐺,

, 𝐺) ⊳ 𝑖
𝐿𝑗 ,

∈ℝ𝑁×𝐶gated×𝑆×(𝑃−𝑅𝐹 𝑖 ) , the spatial features of the global-level graph

15: 𝑖 = 𝑡𝑎𝑛ℎ(𝑙
𝐺
⊗ 𝟏𝑀) ⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑖

𝐺
⊗ 𝟏𝑀) ⊳ 𝑖 ∈ℝ𝑁×𝐶gated×𝑀×(𝑃−𝑅𝐹 𝑖 )×𝑆 , gate copy for information diffusion

16: 𝑠𝑘𝑖𝑝 =𝑠𝑘𝑖𝑝 + 𝑠𝑘𝑖𝑝_𝑐𝑜𝑛𝑣(𝐿) ⊳ 𝑠𝑘𝑖𝑝 ∈ℝ𝑁×𝐶skip×𝑀×(𝑃−𝑅𝐹𝐿 )×𝑆

17: 𝑠𝑘𝑖𝑝 =𝑠𝑘𝑖𝑝 + 𝑠𝑘𝑖𝑝_𝑐𝑜𝑛𝑣(𝐿)
18: ̂ = 𝑒𝑛𝑑_𝑐𝑜𝑣(𝑠𝑘𝑖𝑝) ⊳ ̂ ∈ℝ𝑁×𝑄×𝑀×1×𝑆

19: ̂ = 𝑠𝑤𝑖𝑝_𝑎𝑥𝑖𝑠(̂) ⊳ ̂ ∈ℝ𝑁×𝑆×𝑀×𝑄

20: compute 𝑙𝑜𝑠𝑠 =(̂ , )
21: compute the stochastic gradient of Θ according to 𝑙𝑜𝑠𝑠
22: update Θ
23: until stopping criteria is met

24: output the learned HiSTGNN model

• WD_BJ1 [5]: The weather dataset is hourly collected from 10 ground automatic weather stations with 9 meteorological variables 
in Beijing, released by an online competition for daily weather forecasting.2 It focuses on a set time period forecasting, i.e., from 
7:00 of the day to 15:00 of the next day, a total of 33 hours. However, the input of the original individual sample spans from 
3:00 intraday to 15:00 (UTC) on the next day. The corresponding ground truth covers the time period from 3:00 of the second 
day to 15:00 of the third day. To avoid data overlap, we push the output backward by 4 hours, and the input forward by 9 
hours. Hence, the input time step length is 28, and the forecasting time step length is set to 33. Following [5], we also choose 
temperature at 2 meters (t2m), relative humidity at meters (rh2m), and wind speed at 10 meters (w10m) as the target variables 
and sequentially split the dataset into a training set ranging from Mar. 1st, 2015 to May. 31st, 2018, validation set ranging from 
Jun. 1st, 2018 to Aug. 28th, 2018, and test set ranging from Aug. 29th, 2018 to Nov. 3rd, 2018, respectively.

• WD_ISR3: The weather dataset is hourly collected from OpenWeather4 ranging from Feb. 2nd, 2012 to Oct. 28th, 2017, and 
contains 4 weather conditions with temperature, humidity, wind speed, and atmospheric pressure, observed in 6 cities of Israel, 
including Beersheba, Tel Aviv District, Eilat, Haifa, Nahariyya, and Jerusalem. All 4 meteorological variables are used for 
forecasting targets. We adopt the same daily forecasting as the study [5] i.e., using a 24-step sliding window. The input time 
step length is empirically set to 48 hours. The forecasting time step length is 24 hours. 80 percent of data are used for training, 
10 percent of data are used for validation while the remaining for testing in chronological order.

• WD_USA3: Except that the dataset is observed in 13 cities in the United States of America, including Boston, New York, Philadel-

phia, Detroit, Pittsburgh, Chicago, Indianapolis, Charlotte, Saint Louis, Nashville, Atlanta, Jacksonville, and Miami, the other 
setup of data is identical to WD_ISR.

In all those three datasets, we employ linear interpolation along the temporal dimension to handle missing values, and apply 
min-max normalization to scale each variable within the range of [0, 1]. Table 2 summarizes the statistics of three datasets.

5.1.2. Evaluation metrics

We measure our method and baselines by three common deviation-based evaluation metrics: Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), which are formulated as follows,

𝑅𝑀𝑆𝐸 =
√

1
𝑛

∑
𝑖

(𝑦𝑖 − 𝑦̂𝑖)2, (16)

1 https://github .com /BruceBinBoxing /Deep _Learning _Weather _Forecasting.
2 AI Challenger 2018 https://challenger .ai /competition /wf2018. The official website is currently not working, but the data is available in the aforementioned 

GitHub repository.
3 https://www .kaggle .com /selfishgene /historical -hourly -weather -data.
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4 https://home .openweathermap .org/.

https://github.com/BruceBinBoxing/Deep_Learning_Weather_Forecasting
https://challenger.ai/competition/wf2018
https://www.kaggle.com/selfishgene/historical-hourly-weather-data
https://home.openweathermap.org/
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Table 2

Data statistics.

Data WD_BJ WD_ISR WD_USA

Location Beijing Iseral United States of America

Time span 3/1/2015-11/03/2018 10/2/2012-10/28/2017 10/2/2012-10/28/2017

Time interval 1 hour 1 hour 1 hour

Meteorological variable 9 4 4

Weather station 10 6 13

Sample size 1301 1850 1850

Input length (P) 28 48 48

Output length (Q) 33 24 24

𝑀𝐴𝐸 = 1
𝑛

∑
𝑖

|𝑦𝑖 − 𝑦̂𝑖|, (17)

𝑀𝐴𝑃𝐸 = 1
𝑛

∑
𝑖

| 𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|, (18)

where 𝑦 and 𝑦̂ are the ground truth and the predicted values; 𝑛 is the number of all available predicted values. For them, lower 
values are better. As same with DUQ [5], we first calculate the performance of each target variable over all time steps, then take the 
average of the corresponding one as the ultimate RMSE, MAE, and MAPE criteria. Notably, for MAPE, we mask samples with a value 
of 0 to avoid the issue of division by zero.

5.1.3. Baselines

We compare our HiSTGNN with the following 7 baselines:

• SARIMA [15]: Seasonal Autoregressive Integrated Moving Average is a classic statistical univariate time series forecasting 
method, which utilizes the autoregressive, differencing, moving average, and all three seasonal components to estimate future 
values, where its parameters are chosen based on the AIC (Akaike information criterion).

• SVR [36]: Support Vector Regression is a non-linear variant of support vector machine for regression, which is widely used for 
covariate time series tasks.

• Seq2Seq [37]: Sequence to Sequence model employs an encoder-decoder architecture to effectively model temporal dependencies 
for time series forecasting. It is built upon a GRU-based network with two layers, each consisting of 300 hidden units.

• WaveNet [38]: A deep generative model for generating speech that employs dilated causal convolution with large receptive 
fields to handle long-range temporal dependencies.

• DUQ [5]: A deep uncertainty quantification method that simultaneously outputs the mean and variance estimations for weather 
forecasting. It is two layers GRU-based seq2seq with 300 hidden nodes of each layer.

• AGCRN [39]: A spatio-temporal forecasting method that combines graph convolutional network and recurrent neural network 
to capture spatio-temporal dependencies.

• MTGNN [33]: A state-of-the-art spatio-temporal model for multivariate time series forecasting that utilizes dilated inception and 
graph convolution to discover the long-term temporal patterns and the uni-directed spatial relations among variables.

5.1.4. Implementation details

All the deep learning model training experiments are conducted on Nvidia Titan RTX GPUs, and implemented by PyTorch of 
version 1.2.0 and Python of version 3.6, except for DUQ and Seq2Seq, which are implemented by TensorFlow following their source 
codes. The source code is available at https://github .com /mb -Ma /HiSTGNN.

HiSTGNN. For all datasets, the model is trained by the Adam optimizer with gradient clip 5. The learning rate is set to 0.001. 
The L2 regularization penalty is 0.0001. The epoch is set to 100. Early stopping with 15 patience is used to select optimal model 
parameters, i.e., the training is stopped when the performance of the validation set has not improved 15 times. Following [33], 
The temporal convolution and graph convolution both have 32 output channels. The skip connection layers all have 64 output 
channels. The first convolution and second convolution of the output module have 128 and 1 output channels. The depth of the 
graph convolution module is set to 2. The 𝛽 is set to 0.05. We vary five core hyper-parameters, including the batch size among 
{16, 32, 64}, the depth of the network among {1, 2, 3, 4, 5}, the saturation rate {1, 2, 3, 4}, and the embedding dimensionality of 
variable and station node {5, 10, 20, 30}, to determine the optimal parameter combination and assess the sensitivity of the model 
(More details will be provided in Section 5.6). Instead of utilizing grid search to obtain the optimal performance of all parameter 
combinations, which costs massive computing resources, we sequentially determine the optimal parameters, suggesting that better 
performance improvements are possible. Ultimately, for the WD_BJ dataset, the WD_ISR dataset, and WD_USA, the batch size is (64, 
16, and 32). The depth of the network is (3, 2, and 2), the saturation rate is (3, 2, and 2), and the embedding dimensionalities of the 
variable and station are (20, 5, and 5) and (20, 10, and 10).

Baselines. Considering SARIMA as a univariate time series forecasting method, we train a separate model for each variable of 
each weather station. The orders are automatically searched using the pmdarima python package, where the p, q, and d range from 
1 to 5; the seasonal P, Q, and D also range from 1 to 5; the period for seasonal differencing is set to 12. For SVR, we design a 
9

covariate time series forecasting approach where the historical observations of the target variable and other weather variables are 

https://github.com/mb-Ma/HiSTGNN
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Table 3

Performance comparisons on WD_BJ dataset.

Methods Metrics TEMP HUM WIND Avg.

SARIMA MAE 6.1973 21.8582 1.2860 9.7805

RMSE 7.7761 27.0832 1.7874 12.2156

MAPE (%) 40.06 35.09 71.22 48.79

SVR MAE 5.6790 20.1549 2.4524 9.4288

RMSE 6.4088 22.7126 2.6346 10.5853

MAPE (%) 37.92 29.84 63.23 43.66

Seq2Seq MAE 2.0259 10.8049 0.8954 4.5754

RMSE 2.6985 14.7942 1.4274 6.3068

MAPE (%) 36.11 26.52 61.80 41.47

WaveNet MAE 2.2591 10.9460 1.0051 4.7368

RMSE 2.9978 15.1380 1.3396 6.4918

MAPE (%) 38.96 25.70 74.70 46.45

DUQ MAE 2.0221 10.2879 0.8801 4.3967

RMSE 2.7343 14.9173 1.2702 6.3072

MAPE (%) 34.23 25.88 53.51 37.87

MTGNN MAE 2.0181 10.3525 0.8684 4.4130

RMSE 2.7186 14.9944 1.2596 6.3242

MAPE (%) 36.72 25.44 54.98 39.05

AGCRN MAE 1.8912 10.5406 0.8932 4.4416

RMSE 2.6270 14.9901 1.2576 6.2916

MAPE (%) 31.10 26.09 57.83 38.34

HiSTGNN(our) MAE 1.9533 9.8089 0.8671 4.2098

RMSE 2.6353 14.0129 1.2634 5.9705

MAPE (%) 32.49 23.80 52.40 36.23

used as input to predict future values of the target variable. We employ SVR with the RBF (radial basis function) kernel, setting 
the penalty term C to 0.1 and the epsilon value to 0.2 for all datasets. Following [5], we utilize a two-layer GRU network with 300 
hidden units as both the encoding and decoding layers for the Seq2Seq and DUQ models. The Seq2Seq utilizes mean squared error 
(MSE) as the loss function, while DUQ adopts negative log-likelihood estimation (NLE) as the loss function. Regarding WaveNet, we 
set the dilation factor to 2, the stack size to 6, and the number of residual convolution channels and skip convolution channels to be 
the same as those in HiSTGNN. In the spatio-temporal forecasting model, following [10], we treat the weather stations as nodes of 
a graph that represent the meteorological associations between regions. In addition to the node dimensionality which is the same as 
the dimensionality of the weather station in HiSTGNN, the remaining parameters are set according to the original paper. Except for 
SARIMA and SVR, all models are trained by the Adam optimizer.

5.2. Main results

Table 3, Table 4, and Table 5 present the experimental results of HiSTGNN and compared methods on WD_BJ, WD_ISR, and 
WD_USA datasets, respectively. These tables provide insights into the performance metrics including MAE, RMSE, and MAPE for 
each variable, as well as the average performance across all variables. We can observe that the spatio-temporal models, which 
consider the spatial correlation between variables, outperform the time series forecasting models. In particular, HiSTGNN achieves 
remarkable improvements on the WD_BJ dataset, surpassing the state-of-the-art weather forecasting method DUQ with reductions of 
4.25% in MAE and 5.34% in RMSE. This improvement can be attributed to HiSTGNN’s effective handling of spatial features, as the 
target variables with weak or no seasonal variation are challenging to capture using solely temporal features. For example, when 
examining the temperature, relative humidity, and pressure of New York in the WD_USA dataset (see Fig. 3), it becomes evident that 
only the temperature exhibits a strong seasonal variation, while the relative humidity and pressure are subject to significant noise. 
In general, HiSTGNN achieves new state-of-the-art performance on the majority of the evaluation items, with a success ratio of 30 
out of 42 (considering each metric for each variable of each dataset as an item). Notably, with the exception of the MAPE metric 
on the WD_ISR dataset, HiSTGNN outperforms all baselines in terms of the average performance across meteorological variables on 
all datasets. This justifies our design choices in simultaneously learning the associations among multiple meteorological variables. In 
comparison, MTGNN and AGCRN, which employ flat graph structures to consider the correlation of meteorological variables between 
regions, fall short in handling the transformation between meteorological variables, leading to inferior performance compared to 
10
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Table 4

Performance comparisons on WD_ISR dataset.

Methods Metrics TEMP HUM WIND PSUR Avg.

SARIMA MAE 3.1419 15.8560 1.3799 3.6863 6.0160

RMSE 4.0347 19.2929 1.7756 6.2767 7.8450

MAPE (%) 12.98 30.76 61.85 0.36 26.49

SVR MAE 2.927 9.3751 1.0237 3.427 4.1882

RMSE 3.6021 13.6427 1.5296 5.9853 6.1899

MAPE (%) 6.32 15.46 36.26 1.28 14.83

Seq2Seq MAE 1.3726 7.9663 0.9314 2.7346 3.2512

RMSE 1.8923 11.9565 1.4136 5.3360 5.1496

MAPE (%) 5.51 15.67 36.25 0.27 14.42

WaveNet MAE 1.5107 7.4604 0.9231 2.7631 3.1796

RMSE 1.9306 11.2613 1.3683 4.2814 4.7104

MAPE (%) 5.81 14.57 36.84 0.27 14.37

DUQ MAE 1.3487 8.0896 0.9213 3.0548 3.3536

RMSE 1.8748 11.2739 1.3186 5.1690 4.9091

MAPE (%) 5.35 16.53 36.25 0.30 14.61

MTGNN MAE 1.4483 7.5238 1.0138 2.5149 3.1252

RMSE 1.9290 11.2421 1.4185 4.2898 4.7198

MAPE (%) 5.69 14.87 35.13 0.25 13.99

AGCRN MAE 1.2644 7.5966 0.9105 2.5471 3.0770

RMSE 1.7461 11.3350 1.2828 4.6245 4.7471

MAPE (%) 5.07 15.37 38.00 0.25 14.67

HiSTGNN(our) MAE 1.2551 7.2302 0.9018 2.3911 2.9446

RMSE 1.7287 10.9434 1.3038 4.2666 4.5606

MAPE (%) 4.98 14.66 36.73 0.23 14.15

Table 5

Performance comparisons on WD_USA dataset.

Methods Metrics TEMP HUM WIND PSUR Avg.

SARIMA MAE 2.3112 11.6933 1.4677 3.2208 4.6732

RMSE 3.2113 15.9734 2.0920 4.4713 6.4370

MAPE (%) 13.75 18.09 62.75 0.31 23.73

SVR MAE 2.0571 10.2348 1.3308 3.0054 4.1570

RMSE 3.0018 13.9286 1.9766 4.8748 5.9455

MAPE (%) 11.11 14.73 53.16 0.55 19.89

Seq2Seq MAE 1.8765 9.3221 1.1797 2.7622 3.7851

RMSE 2.5627 12.2728 1.7194 4.1885 5.1858

MAPE (%) 10.23 14.40 52.74 0.20 19.39

WaveNet MAE 1.9139 9.4432 1.2654 2.4281 3.7626

RMSE 2.6709 12.5661 1.6851 3.1876 5.0274

MAPE (%) 11.57 14.54 61.45 0.20 21.94

DUQ MAE 1.9424 9.8207 1.1663 2.4250 3.8386

RMSE 2.6363 12.4793 1.5862 3.4099 5.0279

MAPE (%) 10.62 15.93 52.15 0.23 19.73

MTGNN MAE 1.8201 9.1751 1.1749 2.2735 3.6109

RMSE 2.4732 12.3581 1.5930 3.0508 4.8687

MAPE (%) 10.06 13.97 53.71 0.22 19.49

AGCRN MAE 1.9040 9.2218 1.2746 2.1384 3.6347

RMSE 2.5505 12.3767 1.8039 3.0105 4.9354

MAPE (%) 10.59 14.15 53.11 0.19 19.51

HiSTGNN(our) MAE 1.7546 9.1397 1.1760 2.0975 3.5419

RMSE 2.4247 12.2222 1.6120 2.9052 4.7910

MAPE (%) 10.13 13.88 52.91 0.20 19.28
11
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Fig. 3. Visualization on three target variables in New York from 02/10/2012-10/28/2017.

Table 6

RMSE and MAE on WD_BJ test set using HiSTGNN with different types of graphs.

Methods
TEMP HUM WIND Avg.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

w/o LGraph 2.1456 2.8634 10.4695 14.9019 0.8514 1.2521 4.4889 6.3391

w/o GGraph 1.9777 2.7047 10.2911 14.9029 0.8969 1.3236 4.3886 6.3105

Table 7

Comparison on WD_BJ test set with variants of dynamic interaction.

Interaction type Fusion Diffusion MAE RMSE

DI Avg Pool Gate 4.2098±0.0568 5.9705±0.0769

DI Max Pool Gate 4.3743±0.0997 6.0537±0.1244

DI Avg Pool w/o 4.3545±0.0812 6.0268±0.1061

DI Max Pool w/o 4.3641±0.0923 6.0238±0.1079

w/o DI – – 4.5321±0.0587 6.2003±0.0602

OSI Avg Pool Gate 4.4351±0.0524 6.1520±0.0771

OSI Max Pool Gate 4.4371±0.0426 6.1514±0.0437

OSI Avg Pool w/o 4.4729±0.0515 6.1872±0.0678

OSI Max Pool w/o 4.4404±0.0390 6.1707±0.0821

5.3. Study of the hierarchical graph

As the hierarchical graph includes the local-level graph and the global-level graph, we validate our hierarchical graph by con-

ducting separate experiments using only local graphs and only global graphs. We refer to HiSTGNN without specific components as 
follows:

• w/o LGraph: HiSTGNN without the local graph modeling between meteorological variables. We remove the local graph convo-

lution.

• w/o GGraph: HiSTGNN without the global graph modeling between weather stations. In this variant, we remove the global 
graph convolution and train HiSTGNN using data that is flattened by the station dimension.

Table 6 presents the performance of HiSTGNN with either the global or local graph, both demonstrating the performance degra-
12

dation compared to hierarchical graphs. We also find that temperature and relative humidity exhibit improved performance when 
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Fig. 4. Performances on four types of graph adjacency matrix in WD_BJ test set.

modeled on local graphs, while wind speed is better suited for cross-regional correlation modeling. This inspires us to focus on the 
specific modeling of meteorological features in future research.

5.4. Study of adaptive graph learning

To demonstrate the effectiveness of adaptive graph learning, we compare three methods for constructing the graph adjacency 
matrix 𝐴: 1). Predefined graph 𝐴, calculated using the correlation coefficient matrix; 2). Undirected graph 𝐴, computed based on 
the similarity of node embeddings, represented as 𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝐿𝑈 (𝐸𝐸𝑇 )); 3). Directed graph 𝐴, similar to the undirected graph 
but considering two node embeddings, denoted as 𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝐿𝑈 (𝐸1𝐸

𝑇
2 )). Fig. 4 illustrates the results obtained. The findings 

clearly indicate that the uni-directed graph adjacency achieves the lowest MAE and RMSE, demonstrating significant superiority over 
both the predefined graph and the undirected graph. Although the directed graph with the same structure performs slightly better, 
particularly in terms of MAE.

To further examine the effectiveness of the learned local graphs and the global graph, we conducted a case study using the 
WD_USA dataset. In Fig. 5(a), we visualize the weather stations of the WD_USA dataset and highlight Philadelphia, along with its 
three neighboring stations: New York, Boston, and Detroit. These stations were selected based on their highest weights, indicating 
strong correlations. Philadelphia and New York, sharing similar geographical and temperate continental climates, exhibit the highest 
correlation. Similarly, despite their spatial distance, Boston and Philadelphia are both influenced by ocean currents and situated in 
the same climatic zone. Fig. 5(b) illustrates the temperature changes from September 8th to September 12th, 2013, for the four 
highlighted cities. Although there are gaps among the temperature curves, they display a similar trend, highlighting the temporal 
similarities in temperature patterns across the cities. Furthermore, in Fig. 5(c), we present a heatmap representing the mean edge 
weights among variables for the 13 weather stations. This heatmap reveals the relationships between relative humidity and other 
meteorological factors such as temperature, atmospheric pressure, and wind speed. Consistent with meteorological theory, the rela-

tionship between relative humidity and these factors sequentially decreases. It is important to note that the correlation coefficients 
are relatively small due to the complexity of the associations among meteorological factors.

5.5. Study of the dynamic interactive learning

In this section, we conduct experiments on various variants of HiSTGNN to assess the effectiveness of the proposed dynamic 
interactive learning module. This module plays a crucial role in establishing the message-passing mechanism between different 
weather stations, utilizing the information fusion and diffusion mechanisms described in Section 4.4. There are three aspects that 
need to note: 1). interaction type, including the following ways:

• DI: HiSTGNN following iterative interaction with the multi-layer stacking network.

• OSI: HiSTGNN with one-shot interaction where we replace the interaction between local graphs and the global graph per layer 
with only one fusion and diffusion operation at the beginning and the end.

• w/o DI: HiSTGNN without hierarchical graph structure in which we remove the related components of the global graph on 
temporal and spatial learning.

2). fusion with average pooling or max pooling. 3) diffusion with gate mechanism or w/o. Hence, there are 9 variants in total as 
shown in Table 7. We repeat per experiment 10 times with the same parameters for all variants and report the average of MAE 
and RMSE and the standard deviation. From the table, we can find that dynamic interaction + average pooling + gate outperforms 
other variants. In detail, DL is better than OSI among the three interaction types. OSI is superior to w/o DI whereas the latter is still 
13

competitive compared to baselines. Besides, the variants of diffusion have an outstanding impact on performance than ones of fusion. 
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Fig. 5. A case study of the correlations between variables.

A reason may be that the gate mechanism has more effect on information propagation than the diversity between average pooling 
and max pooling.

5.6. Study of model parameters

5.6.1. Effect of graph size

To further explore the impact of graph scale on the weather forecasting model, we varied the number of meteorological variables 
from the WD_BJ dataset, selecting [3, 4, 6, 8, 9] variables. For consistency, we used a fixed number of 10 weather stations across all 
cases. As depicted in Fig. 7(a), the visualization of the results demonstrates a gradual improvement in prediction performance as the 
variable-level graph expands. However, it is important to acknowledge that the exploration of scale boundaries for the variable-level 
graph is limited by the available number of meteorological variables. Regarding the number of weather stations, we did not conduct 
experiments with varying numbers due to inherent variations in prediction performance among stations. Therefore, the final results 
would be influenced not only by the capacity of global graph learning with different sizes but also by the inherent bias among 
stations.

5.6.2. Effect of network depth

Fig. 7(b) provides an analysis of the impact of network depth on the WD_BJ dataset. Increasing the depth of the network archi-

tecture enables an expanded spatio-temporal receptive field, thereby enhancing the model’s representation capability. However, it 
is crucial to acknowledge that as the network depth becomes significantly deeper, the training process becomes more challenging, 
resulting in a gradual increase in the mean absolute error (MAE).

5.7. Performance on multi-time step forecasting

In this section, we conducted an in-depth analysis of the multi-time step forecasting capability of HiSTGNN and the baseline 
models. Fig. 6 presents a performance comparison, highlighting the consistent superiority of neural network-based methods over 
14

statistical machine learning methods. Notably, HiSTGNN consistently outperformed all other models across all datasets and most of 
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Fig. 6. MAE on three weather datasets with baselines over multiple time steps.

Fig. 7. Effect of graph size and network depth on WD_BJ data.

the multiple-time steps, as indicated by the diamond-shaped gray line surpassing the other lines. It is worth noting that the MAE 
gradually increases with each successive time step, in line with the principles of multi-time step forecasting. As time progresses, the 
uncertainty in the forecasts tends to grow (as depicted in Fig. 6(a)). However, it is also important to acknowledge that predictions 
may be more accurate at specific points in time due to the periodic changes in time series data (as shown in Figs. 6(b) and 6(c)).

5.8. Case study

To gain further insights into the forecasting performance, we conducted visualizations comparing the ground truths of different 
meteorological variables with the predictions generated by our proposed method (HiSTGNN) and two competitive methods (DUQ 
and AGCRN) on WD_BJ test set. The visualizations, depicted in Fig. 8, illustrate that all three methods are capable of capturing 
the general trends of temperature, relative humidity, and wind speed. HiSTGNN performs relatively closer to the ground truth, 
particularly at the peak values. However, a closer examination of Fig. 8(f) reveals that wind speed exhibits more fluctuations, and 
all three methods struggle to accurately predict the downward trend. This observation highlights the challenge of capturing local 
time-scale variations while avoiding prediction instability caused by an excessive focus on local dynamics. Addressing this challenge 
15

will be an important aspect of our future research.
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Fig. 8. Visualization of predictions of three methods and the ground truth for the 30th sample of WD_BJ test set.

6. Conclusion

In this paper, we proposed a hierarchical spatio-temporal graph neural network (HiSTGNN) to capture spatio-temporal depen-

dencies between meteorological variables across multiple weather stations in an end-to-end way. HiSTGNN first constructs adjusted 
dependency matrices of the local graphs and the global graph using an adaptive graph learning module. Subsequently, it employs 
spatio-temporal learning modules to model spatial and temporal dependencies. Additionally, a dynamic interactive learning module 
is designed to aggregate the representation of the local graph into the corresponding global node and propagate information in 
the opposite direction. Experimental results demonstrate that our proposed method achieves state-of-the-art performance on three 
real-world meteorological datasets.

Despite the promising results obtained with our proposed method, there are several limitations that need to be addressed. First, 
there exists an unstable learning process when modeling multiple sites and variables simultaneously. That is, although the validation 
loss shows a decreasing trend, there are observable fluctuations, which may be caused by the challenge of finding the optimal 
solution in multi-meteorological variables optimization and the relatively small data. Second, when dealing with the meteorological 
data collected from large-scale weather stations, the hierarchical graph’s scale increases significantly, posing significant challenges 
to computational efficiency. In future research, we will conduct further investigations on multi-variable optimization and attempt to 
16

solve large-scale weather station data using graph sampling and parallelization techniques.
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