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Abstract—Spatio-temporal forecasting has a wide range of applications in smart city efforts, such as traffic forecasting and air quality
prediction. Graph Convolutional Recurrent Neural Networks (GCRNN) are the state-of-the-art methods for this problem, which learn
temporal dependencies by RNNs and exploit pairwise node proximity to model spatial dependencies. However, the spatial relations in
real data are not simply pairwise but sometimes in a higher order among multiple nodes. Moreover, spatio-temporal sequences
deriving from nature are often regulated by known or unknown physical laws. GCRNNs rarely take into account the underlying physics
in real-world systems, which may result in degenerated performance. To address these issues, we devise a general model called
Mixed-Order Relation-Aware RNN (MixRNN+) for spatio-temporal forecasting. Specifically, our MixRNN+ captures the complex
mixed-order spatial relations of nodes through a newly proposed building block called Mixer, and simultaneously addressing the
underlying physics by the integration of a new residual update strategy. Experimental results on three forecasting tasks in smart city
applications (including traffic speed, taxi flow, and air quality prediction) demonstrate the superiority of our model against the
state-of-the-art methods. We have also deployed a cloud-based system using our method as the bedrock model to show its practicality.

Index Terms—Spatio-Temporal Data Mining, Urban Computing, Reaction Kinetics, Physics-Informed Neural Networks.

1 INTRODUCTION

N recent years, large quantities of sensors have been de-
Iployed in different locations to collectively sense the en-
vironment, generating massive geospatially-correlated and
time-varying data. Such sensors’ readings have been termed
spatio-temporal (ST) sequences, as shown in Figure 1(a). No-
tably, it is common that one sensor generates multivariate
time series as it monitors different target conditions simul-
taneously. For instance, the loop detectors in Figure 1(b)
report timely readings about the vehicles passing by as well
as their travel speeds, providing insights for traffic man-
agement. Likewise, Figure 1(c) illustrates several air quality
monitoring stations that constantly report the concentration
of different pollutants, such as PM2.5 and PM10. In this
paper, we study the problem of spatio-temporal forecasting
which has facilitated a wide range of applications in smart
cities, such as traffic forecasting [1], [2], [3], [4], air quality
prediction [5], [6], [7], [8], and water quality prediction [9].
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Fig. 1: Illustration/examples of spatio-temporal sequences.
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One key characteristic that must be considered in spatio-
temporal forecasting is spatio-temporal dependencies. Primar-
ily, a sensor’s future is highly conditioned on its previ-
ous states, demonstrating strong temporal dependencies.
Recurrent Neural Networks (RNN) have become one of
the most popular architectures for learning such sequential
information due to their flexibility in capturing nonlinear
relationships [10]. Moreover, the future readings of a sensor
are often impacted by its neighbors” histories. To model such
structural relationships among sensor data, graph theory has
long been adopted as a powerful tool, where the nodes
denote sensors, and the edge weights represent the pairwise
proximity measured by geographical distances. We thus
use the term “node” and “sensor” interchangeably in the
following parts. Based on this formulation, a new family
of deep learning models called Graph Convolutional Recur-
rent Neural Networks (GCRNN) has achieved state-of-the-
art performance in many spatio-temporal forecasting tasks
[1], [4], [11], [12]. As its name suggests, they integrate Graph
Convolutional Networks (GCN) [13] with RNNs, in which
GCNs are employed as a basic building block to capture the
spatial dependencies among sensors, and RNNs are applied
to modeling the temporal dependencies.

Even though the above GCRNN methods have achieved
promising results in ST forecasting, they only leverage the
pairwise connections among data. In practice, the inter-
sensor relationships are sometimes beyond pairwise (high-
order relations among nodes, e.g., ternary, quaternary) and
even much more complicated. Figure 2(a) shows an example
of nine base stations at different locations with various land-
use functions (e.g., S5, Se, S7 and S are in a business area),
each of which reports the number of mobile users within a
certain range. If a big sales promotion occurs in this business
area, these four stations will simultaneously witness a rising
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Fig. 2: (a)-(b) Layout and graph generation of nine sensors
in a given area. (c) We can generate hyperedges (#; to H4)
to encode high-order relations among nodes based on their
land-use functions, e.g., office areas, business districts, etc.

trend in occupancy. In this case, merely modeling pairwise
connections may be insufficient to represent such complex
and high-order structures among sensors. To better match
reality, a powerful method that jointly captures the pairwise
and high-order relations among sensors is acutely needed.

Meanwhile, GCRNNs have overlooked the prior knowl-
edge of underlying physics. In reality, ST sequences deriving
from nature are often governed by known or unknown
physical laws [14]. For example, reaction kinetics describes
the evolution of variables in a dynamic system continu-
ously. To be more specific, reaction kinetics employs the
first derivative dz/dt to analyze the instantaneous rate of
change of a variable x with respect to time ¢, which has
been widely explored in various real-world applications,
such as describing chlorine decay in water supply systems
[15], [16], evaluating air pollutant emissions [17] and fore-
casting traffic flows [18], [19]. Though GCRNN applied in
the existing works can approximate the system dynamics
(i.e., temporal dependencies) to some extent via the state
transformations in RNNs, its discrete nature makes it an
awkward fit to model the continuous changes driven by
physical laws. Therefore, how to incorporate such physical
rules (e.g., reaction kinetics) as prior knowledge to the
neural network models for better modeling of ST sequences
remains an open problem.

In this paper, we successively present two models (an
intermediate model and its physics-informed version) to tackle
the above two challenges, respectively. Firstly, we intro-
duce MixRNN, a method allowing efficient mixed-order
spatial relation modeling, by substituting the graph convo-
lutions in GCRNNs with a new building block called Mixer.
The mixed-order spatial relations are learned through two
branches: one to capture the pairwise relations via GCNs,
and the other to learn the high-order relations via hy-
pergraph convolutional networks (HGCN) [20], [21]. Com-
pared to conventional graphs in which each edge only
connects two nodes, hypergraphs aim to handle more com-
plicated high-order relations using degree-free hyperedges,
as shown in Figure 2(c). Since the ground truth of high-order
relations is absent in practice, our Mixer block avoids the
time-consuming preprocessing in manual hypergraph con-
struction [21], [22], and instead generates the hypergraph
structure adaptively based on time-varying inputs.

Secondly, we recruit a new residual update strategy
to endow MixRNN with physical knowledge (termed
MixRNN+), by assuming that a dynamic system is gov-
erned by complex reaction kinetics. Inspired by reaction
kinetics that utilizes a fixed and pre-defined ordinary dif-
ferential equation (ODE) to describe the dynamics, a neural
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network is employed to approximate the derivatives of

hidden states in MixRNN. As a result, MixRNN+ possesses

continuous-time states which obey ODEs between succes-
sive time slots and can be updated upon new observations.

In essence, this strategy can also be linked to recent ad-

vances that relate residual networks and ordinary/partial

differential equations (ODEs/PDEs) [23], [24], [25], [26], [27].

Our residual update strategy not only helps the data-driven

model (MixRNN) better generalize to different applications,

but also enhances the interpretability by modeling the in-
stantaneous rate of change of the hidden states.
In summary, our main contributions are four-fold:

o MixRNN+: We present a unified model that jointly consid-
ers the mixed-order spatial relations and the continuous-
time hidden dynamics for spatio-temporal forecasting. A
cloud-based system for urban flow management has been
built to demonstrate its practicality.

o Mixed-order spatial relation learning: We introduce a new
module for jointly capturing the pairwise and high-order
spatial relations among sensors via different branches,
which can be easily integrated into existing architectures
including both RNNs and CNNSs.

o Physics-informed learning: We couple physical laws (i.e.,
reaction kinetics) with the strong modeling capacity of a
data-driven deep learning model to embrace both inter-
pretability and accuracy.

o Generalizability: We evaluate our method on three typical
tasks in smart cities using real-world datasets. Extensive
experiments verify that our model displays very compet-
itive performance compared to the state of the art.

2 PRELIMINARY

2.1 Notations

Definition 1 (Spatio-temporal sequence): Let X; € RV*P

denote the signal observed from N sensors at a certain time
t, where D is the number of measurements. Each entry z;;
indicates the value of the j-th measurement of sensor .
Definition 2 (Graph): Generally, geo-sensors are intercon-
nected with each other through an explicit network (e.g.,
loop detectors in road networks) or underlying structure
measured by Euclidean distance (e.g., air quality stations
in urban areas). We represent such prior knowledge as a
directed graph G = (V,&, A), where V is a set of sensors
and £ is a set of edges. A € RV*¥ is a weighted adjacency
matrix, describing the proximity between different nodes.
Definition 3 (Hypergraph): Similar to the adjacency matrix
in conventional graphs, we can use an incidence matrix
B € RV¥*M to represent the underlying hypergraph struc-
ture among data, where each element b;; is the likelihood
that node 7 belongs to hyperedge H; and M is the number
of hyperedges. As it is very difficult to pre-define the hyper-
graph structure among sensors, we generate it during the
model training, which will be detailed in Sec. 4.2.

Problem Statement. Given a graph G and historical obser-
vations of all sensors from the past 1" time steps, our target
is to learn a function f(-) that predicts D’ measurements
over the next 7 steps:

[X1.1,9]

where X ;.1 € RVXPXT and Y., € RNXD'*T,

AR VI
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2.2 Graph Convolutional Recurrent Neural Networks

Recently, GCRNN has been one of the state-of-the-art meth-
ods for ST forecasting thanks to its power in capturing ST
dependencies. GCRNN factorizes the modeling of spatial
and temporal domains by using GCNs for spatial learning
and RNNs for temporal learning, which is formulated as:

r = 0 (GCN, (X4, H;_1) + by) |
W = 0 (GCN, (X0, Hy_1) + by,

C; = tanh (GCN, (X, (ry ©H;_1)) + b.),
H=u0C+(1-uw) oH,,

where X(¢) and H(¢) indicate the input and output at time
t; GCN is a function for learning spatial dependencies, such
as a standard GCN [13] and diffusion convolution [1]; r; and
u; are reset gates and update gates of GRUs [28]. b,, b,,, b,
are the biases and 1 is an all-one matrix; o is the sigmoid
function and © denotes the Hadamard product. In this
formulation, the hidden states H are recurrently updated
based on the previous states along the time axis, considering
the contextual information from spatial domains as well.

3 RELATED WORKS
3.1 Deep Learning for Graph & Hypergraph

A graph is a structure amounting to a set of objects in which
some pairs of objects are in some sense “related”. GCNs are
popular building blocks for learning such graph-structured
data [29], which can be categorized into spectral-based and
spatial-based approaches. Spectral-based methods [13], [30]
focus on the design of a fast approximation of spectral con-
volutions on graphs. Within the latter class [1], [31], [32], the
convolution operation is defined in the groups of spatially
close nodes. Though effective, graphs encounter challenges
in describing more complex data, e.g., high-order relations
among multiple nodes. A hypergraph is a generalization of
a graph in which an edge can join any number of ver-
tices, allowing us to model high-order correlations among
different nodes. This new concept was first studied in [20]
and revealed greater potential than a conventional graph
in modeling real-world data. Then, [21], [33] generalized
the convolution operation from graphs to hypergraphs, i.e.,
hypergraph convolutional networks (HGCN). These models
cannot be directly applied for modeling ST sequences, since
they mainly focus on feature aggregation in the spatial
domain while overlooking the temporal dependencies.

3.2 Spatio-Temporal Forecasting
3.2.1 Traditional physical models

Learning spatio-temporal dynamics of a system to forecast
the future is crucial to fields as diverse as physics and
environics. To this end, traditional physical models assume
that a dynamic system is driven by certain physical laws,
represented as ordinary or partial differential equations
(ODEs/PDEs) that dominate the whole process irrespective
of time or locations. Among these models, reaction kinetics
is the most representative to analyze a dynamic system
[15], [16], [17], [18], [19]. For example, [15] described both
bulk and wall chlorine decay via simple first-order decay
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kinetics with linear dynamics. [19] modeled the instanta-
neous change of the traffic data using linear ODEs. [34]
presented a numerical method to model kinematic wave
(KW) traffic streams containing slow vehicles. Despite their
success, most of these studies were built on strong do-
main knowledge, including extensive computation over-
heads when solving ODEs/PDEs by numerical methods.

3.2.2 Data-driven approaches

The second category is data-driven prediction models which
learn from historical data to enable a system to give a
desired output. Compared to classic physical models, data-
driven methods have demonstrated their advantages in
both effectiveness and flexibility in many applications [8],
[9], [35]. Typically, autoregression models (e.g., ARIMA [36]
and VAR [37]) have been widely applied for time series
prediction. They however rely on the stationary assumption
and show inferiority in learning non-linearity [7]. With re-
cent advances in deep learning techniques, spatio-temporal
graph convolutional networks have been the dominant class
for ST sequence prediction, following two paradigms. They
either integrate GCNs with RNNs [1], [4], [12], [38], [39] or
CNNs [3], [40], [41], [42], [43], [44], [45], in which GCNs
are used as basic building blocks to capture the spatial
dependencies while RNNs or CNNs are used for model-
ing the temporal dependencies. Meanwhile, capturing the
high-order relations among multiple nodes is crucial to ST
forecasting as well. To this end, [22] proposed HGCRNN by
integrating hypergraph convolutions with RNNs to jointly
learn the high-order spatial relations and temporal dynam-
ics in ST sequence data. However, HGCRNN fails to capture
the lower-order (i.e., pairwise) relations without adding
very restrictive constraints, and also ignores the underlying
physics. To tackle these issues, we devise the intermediate
model MixRNN, which will be introduced in Sec. 4.

3.3 Physics-Informed Deep Learning

Physics-Informed Neural Networks (PINN) are a new fam-
ily of models that attempts to couple physical knowledge
with the strong capacity of data-driven models. For in-
stance, some pioneering studies introduced a physics-based
regularization to guide the training of neural networks
in lake temperature modeling [46], [47]. [48] presented a
warping scheme with physical constraints for sea surface
temperature prediction, but only suitable for the dynamic
system that obeys general advection-diffusion principles.
[49] further adopted a hybrid learning paradigm for turbu-
lence modeling by marrying turbulent flow simulation with
neural networks. However, using such certain physical con-
straints makes it hard to generalize to various applications.

In addition, there is another line of works linking dif-
ferential equations with neural networks [24], [25], leading
to the integration of ODEs, that is seen as continuous
residual networks [50]. Following them, researchers started
to apply this paradigm for the simulation of multivariate
time series, such as irregular time series [27], hydropower
generation [51] and reservoir inflows [52]. However, none
of these methods can be directly applied to large-scale ST
sequences as they are limited to low-dimensional time series
and cannot well handle the spatial dependencies among a



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3222373

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4
Element-wise Activation
O Operation |:| Function O Sensor A Hyperedge ( h
- ~N Pairwise Relation Modeling by GCNs )
0 0
H,. »(x H . . @ .
t-1 O @ t A > S “‘ @@@ @ Z}?an
@ & S @ a 1 7,
rt 1-hop Node Feature 2-hop Node Feature Node Feature
Aggregation Aggregation Update
ut Ct : : - >
E] E Ongh—order Re/anonOMode/mg by HGCNsO
- o) A e} A 0
M : : H., ] % % %o o
A | Mixer | Mixer | Mixer - O 04?7%0 %
ol =l L X, oo A0 e
X Hypergraph Node-to-Hyperedge Hyperedge-to-Node
4 Construction Aggregation Aggregation
A J - J

(a) Details of MixRNN cell

(b) Ilustration of Mixer block

Fig. 3: lllustration of the MixRNN cell (left hand side) and Mixer block (right hand side), where the legend is at the top left.

large number of sensors. In this paper, by assuming that the
dynamic system is driven by reaction kinetics, we further
enhance the proposed MixRNN with physical knowledge
by a novel residual update strategy. This new model termed
MixRNN+ will be delineated in Sec. 5

4 MiXeD-ORDER RELATION-AWARE RNNs

Figure 4 illustrates the framework of MixRNN, which fol-
lows the paradigm of the encoder-decoder architecture [53].
Firstly, we leverage a MixRNN as the encoder to transform
the historical observations X ;.7 into hidden states. In each
MixRNN cell (i.e., at each time step), we replace the matrix
multiplications in standard RNNs with the proposed Mixer
block to learn the spatio-temporal dependencies. Compared
with the GCRNN-based models that only consider the pair-
wise relations, our cell can jointly capture different orders
of relations among data. Subsequently, we feed the last en-
coder state Hy as the initial state of the MixRNN decoder to
generate the predictions Y., step by step. We will describe
each model component in the following sections.

D & D are MixRNN cells Y:
X X7 X71 Xr Start L . -
Encoder Decoder
Fig. 4: Framework of MixRNN.
4.1 MixRNN Cell

As shown in Figure 3(a), the target of a MixRNN cell is to
holistically capture both temporal and spatial dependencies
by combining the previous hidden states and the current
input. We follow the idea of a variant of RNN called Gate
Recurrent Units (GRU) [54] using gating mechanisms to
control the contribution of the previous state H;_; € RV <
and the current observation X; € RM*P. Specifically, a
MixRNN cell is formulated as:

ry =0 (¢r (X, Hi—q) + b)), 1)
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uy =0 (¢ (X4, Hio1) + by), V)
C; = tanh (¢, (X¢, (r: ©H;—1)) + b.), 3)
H=u0C+(1-w)oH._, 4)

where r; € RVXF and u, € RY*F are reset gates and
update gates to control which information should be passed
to the output. b,, b,, b, are the biases and 1 is an all-one
matrix with equal size to H;; ¢,, ¢, and ¢. are non-shared
Mixer operators for modeling mixed-order relations among
nodes in the spatial domain.

4.2 Mixer: Mixed-Order Relation Learning

The key element of a MixRNN cell is the Mixer block
applied at each time step. As shown in Figure 3(b), it aims
to learn the pairwise and high-order relations by GCNs and
HGCN s separately in different branches, given the observed
signals X at time ¢ and the last hidden state H;_;. Once we
obtain the updated node features from these branches, the
last step is to fuse them by element-wise addition. Com-
pared with the previous studies [1], [22], our Mixer presents
the first attempt to explicitly capture different orders of
relations within one building block.

4.2.1 High-order Relation Learning

In real-world systems, the relationships between objects can
be high-order, beyond pairwise formulation [33]. A hyper-
graph is a natural solution to model such characteristics, in
which each hyperedge can jointly connect multiple vertices.
Recall that we employ an incidence matrix B to represent
the underlying hypergraph structure among data, where
each element b;; is the likelihood (not binary indicators) that
node 7 belongs to hyperedge j. Motivated by HGCRNN [22]
for ST forecasting, we modify HGCNs for high-order rela-
tion modeling as the first branch of MixNet. For simplicity,
we concatenate X; and H;_; to be P; € RN*X(F+D) a5 the
input of both branches. Figure 3(b) shows the pipeline of
high-order relation modeling, which contains three steps:

(a) Hypergraph Construction.

One major issue of HGCRNN is that its performance relies
heavily on the quality of the hypergraph structure. How-
ever, in practice, we have no ground truth of the hypergraph
describing the high-order relations among data. HGCRNN
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requires extensive expert knowledge to engineer a hyper-
graph construction for each application or dataset, which
largely reduces its practicality. Moreover, the spatial correla-
tions in ST sequence data are highly dynamic, changing over
time [7], [55]. Using a fixed hypergraph structure across all
time steps as HGCRNN does will degrade the performance.

In this paper, we solve this problem by adaptively gen-
erating the hypergraph structure (i.e., the incidence matrix
B;) at an arbitrary time ¢ using a 2-layer GCN «:

B; = softmax (¢(P4)), ()

where softmax is similar to applying normalization in each
hyperedge, which guarantees that the sum of each column
equals one. When creating hyperedges, such transformation
not only considers the similarity between the time series
readings at different locations, but also captures the spatial
proximity between nodes via GCNs. In this way, we can
easily achieve a dynamic hypergraph at different time. Com-
pared with HGCRNN, our data-driven hypergraph is more
flexible and can be easily adapted to a variety of real-world
tasks. It is worth noting that we do not need to introduce an
additional regularizer such as a clustering loss [56] to guide
the learning of ¢, because the regularizer might restrict
modeling capacity [13] and cause extra training issues (see
more details in Sec. 6.3.4).

(b) Node-to-Hyperedge Aggregation.

After the hypergraph construction, the next step is node-to-
hyperedge aggregation. Instead of using complex or time-
consuming operations like attention mechanisms [7], [22],
[33], we produce the features of each hyperedge by directly
aggregating features of the corresponding nodes that belong
to this hyperedge (see Figure 3), which can be implemented
through the multiplication of the transpose of the incidence
matrix as follows:

E, = Aggregate,,,(B,P;) = B/ P,W,, (6)

where E; € RM*F denotes the the features of M hyper-
edges; Meanwhile, we employ learnable parameters W, €
RUEFPIXF for an additional feature transformation. In other
words, we formulate the node-to-hyperedge mapping func-
tion as a linear combination (a.k.a weighted global pooling)
of node features such that the new features can aggregate
information from multiple locations.

(c) Hyperedge-to-Node Aggregation.

Once we obtain the features of M hyperedges, the final step
is to update the features of each node by aggregating their
related hyperedge features, Figure 3(b) illustrates how we
achieve this. Analogy to the former step, we implement the
node-to-hyperedge by matrix multiplication as

Zi”gh = Aggregate;,, (B, E;) = B Ey, (7)

where Z? 9" ¢ RNXF are the new node representations. In

summary, we perform a node-hyperedge-node transforma-
tion to learn the high-order relations in this branch.

4.2.2 Pairwise Relation Learning

On the other hand, pairwise relations also play an important
role in the prediction task. The modern tool for learning
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such structural relations is GCNs. For example, [1] pre-
sented the first attempt to introduce diffusion convolutions
for traffic forecasting by relating traffic flow to a diffusion
process. Following this study, we use diffusion convolutions
to model the pairwise relationships among the directed
graph. Let Do and D; denote the out- and in-degree matrix
based on A. We characterize the diffusion process b¥ a
random walk on G and a state transition matrix D " A.
Noticing that it is also necessary to model the information
from the upstream nodes, we formulate the pairwise rela-
tions by considering the bidirectional diffusion process as

, K k
Zmr =% (em (D'A)" + 04,2 (D7 A7) ) P,W,,
k=1

where k is the diffusion step; 8 € RX*?2 assigns trainable
weights to each diffusion step and W, € REFD)IXF jg
for feature conversion. By this, we simulate the pairwise
diffusion process from both directions to update the node
features in this branch. We set K = 2 in our experiments
to consider the 2-hop neighbors of each node. Besides, a
self-loop is added to A to allow our model learning self
relations. Finally, we fuse the updated features from both
branches to obtain the output of a Mixer block:

Z; = LayerNorm (Z?igh + Zfair) 7 @®)

where LayerNorm is a layer normalization layer [57] per-
formed for faster training.

4.2.3 Generalization to Other Models

Mixer can be easily generalized to existing models for struc-
tural relation modeling. By turning off one of the branches, it
will be degraded to a GCN or an HGCN, respectively. In the
high-order branch, our method does not need heavy human
effort to determine the hypergraph structure compared to
HGCRNN. Although MixRNN has one more branch than
a GCRNN or an HGCRNN, we find that they require very
close computation time in practice (see Sec. 6.4). Apart from
RNNSs, our Mixer can also be easily integrated with existing
CNN network architectures [2], [3] and achieves promising
improvements (see Sec. 6.3.3). Thus, it has great potential in
a wide range of applications, especially in multi-modal data
with complex relationships between objects.

4.3 Encoder-Decoder & Optimization

For multi-step ahead forecasting, we employ the sequence-to-
sequence architecture [53] where both encoder and decoder
are the proposed MixRNNSs. Scheduled sampling [58] is em-
ployed to alleviate the discrepancy between the input dis-
tributions of training phase and testing phase. As MixRNN
provides an end-to-end mapping from the historical data
to the predictions and is differentiable everywhere, we can
train the whole network with the back-propagation rule.
During the training phase, the Adam optimizer [59] is used
to minimize the Mean Absolute Error (MAE) between the
prediction results Y., and the ground truth Y.,:

r N D’

1
L(®)= ND' ZZZ [eij — Ytizl » )

t=1i=1 j=1

where © are all trainable parameters in MixRNN.
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5 PHYsIcs-INFORMED MiIXRNNs

Recall that MixRNN allows us to jointly capture the mixed-
order spatial relations and the temporal dependencies in ST
sequences. To enable physics-informed learning, we further
couple the intermediate model MixRNN with continuous-
time dynamics that are driven by reaction kinetics. Figure 5
depicts the framework of the advanced model, where two
MixRNN+ are used as the encoder and decoder respectively.
As can be seen in Figure 5, MixRNN+ possesses continuous
states which obey an ordinary differential equation (ODE)
between successive steps, and can be updated upon ob-
servations. This new feature is the major difference against
MixRNN as shown in Figure 4. To achieve this, we present
a simple yet effective residual update strategy, in which a
neural network is used to infer the instantaneous rate of
change of the hidden states at any time.

D & D are MixNets QT
ODE
ODE
ODE D’-\I}L/E'L
T T T f

X X7 Xz Xr

Encoder

Decoder
Fig. 5: Framework of MixRNN+.

5.1

As mentioned in Sec. 3.2.1, traditional physical models for
spatio-temporal forecasting usually rely on the assumption
that the dynamic system is driven by certain physical laws.
To avoid the heavy computation overheads in solving high-
order ODEs/PDEs, reaction kinetics employs the first-order
ODE to analyze the dynamic system [16], [19]. In contrast to
deep learning models such as GCRNN:S, traditional physical
models are always easier to interpret since they explicitly
model the instantaneous rate of change of the variable ev-
erywhere. A general form of reaction kinetics is to represent
the differential equation of the reactant x as
)

where f is a pre-defined function based on expert knowledge
according to the specific application, which takes the time
and the current value of the variable as inputs to compute
the derivative. For example, first-order kinetics describe the
rates of reactions as % = —kz, where k is the exponential
decay constant. A combination of higher power of z, e.g.,
>0 knx™, can indicate more complex reaction equations.

Recap of Reaction Kinetics

(10)

5.2 Residual Update Strategy

Although the above physical models are easy to interpret by
virtue of modeling the derivative, most of them were built
based on domain knowledge and not flexible to generalize
to different real-world systems. For instance, we cannot
directly transfer the exponential decay rule from model-
ing water pressure to urban traffic. Hence, we begin with
thinking from another perspective: can we couple reaction
kinetics with the strong modeling capacity of a data-driven model
to embrace both interpretability and accuracy?
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To answer this question, let us first briefly revisit the
state transformation in standard RNNs. Given the previous
state H,_; € RVN*F and its current input X; € RN*D an
RNN (in particular, GRU) generates its current hidden state
Ht by

Ht == frnn(Ht—hXt) (11)

where f,.,.,, is a GRU function for state transformation. From
Eq. 11, we can observe that the hidden state is updated
discretely and fully depends on the time-invariant weights
of RNNs. However, ST sequences usually come from nature
and evolve continuously over time, which means that dis-
crete RNNs may not be optimal for modeling them.

To solve this issue, we draw inspiration from the above
reaction kinetics and devise a new model called MixRNN+,
which casts the physical mechanism into MixRNNs for a
better modeling of ST sequences. We first assume that the
dynamic system is driven by reaction kinetics, and then
approximate the instantaneous rate of change of the hidden
state everywhere via a residual update strategy. Specifically,
we elaborate to change the rule of state transformation to be
continuous in MixRNNSs:

t

A JH., qH,
H,=H,_, + / ds, where =2 = f,(H,, s), (12)
i—1 ds ds

Ht = f'r‘nn(I:Itvxt)v (13)

where 6 is the parameters of a neural network f. From
a mathematical viewpoint, the intermediate state I:It can
be interpreted as the left limit of the current state H;. In
contrast to reaction kinetics in Eq. 10 that compute the
derivative based on a pre-defined function f, we parame-
terize the derivative of hidden states by a trainable neural
network fy. Note that computing H; is equivalent to solving
an ODE, we thereby employ a numerical black-box ODE
solver (here it is the Euler method, a first-order numerical
procedure for solving ODEs with a given initial value) to
iteratively obtain the target state in Eq. 12 as:

Hriae=H: + At fo (Hr,7), (14)

where 7 € [t — 1,t) and At is a hyperparameter to control
the temporal resolution. This operation allows our model
to generate hidden states at an arbitrary frame rate, leading
to continuous-time dynamics. Since Eq. 14 updates its hid-
den state H; based on the residual At - fy (Hy,t), we call
this strategy residual update (ResUpdate), and for simplicity
rewrite it as

H! = ResUpdate(fy, Hy_1, (t — 1,1)). (15)

Comparison with ResNet. Our residual update strategy
can also be interpreted as a continuous version of ResNet
for deep residual learning [50]. Formally, a residual layer
updates the hidden state at the ¢-th layer by using a
transformation f; over the previous state, computed as

H; = H;, 1 + fi(H;_1). In contrast to ResNet, our ResUp-

date (Eq. 14) has the following differences:

o The primary distinction is that, the rationale of ResUpdate
is coupling reaction kinetics into RNN to derive continuous
hidden dynamics between observations, rather than forming a
very deep neural network by mitigating the gradient issue
as ResNet does.
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o The second difference is that ResUpdate has shared parame-
ters across all layers. Without weights and biases depending
on time, the transformation in ResUpdate is defined for all
t, giving us a continuous expression for the derivative of
the function we are approximating.

o The third difference is that, because of shared weights,
there are much fewer parameters in a ResUpdate than in an
ordinary ResNet. For example, assuming the number of
evaluation steps between observations is N,, there would
be N, times the number of parameters in a ResNet com-
pared to a ResUpdate.

In addition, we conduct some experiments to study the
effects of ResUpdate vs. ResNet on three datasets. See Sec.
6.3.5 for experimental results and related discussion.

5.3 Procedure of MixRNN+

We present a physics-informed approach called MixRNN+
by integrating MixXRNN with the residual update strategy,
which not only enables the data-driven model MixRNN to
have continuous-time dynamics, but also enhances the in-
terpretability by modeling the instantaneous rate of change.
Algorithm 1 illustrates the procedure of MixRNN+. Recall
that H, € RY*F denotes the hidden states of all nodes
at a given time ¢. First, the initial hidden states are set all
zeros in line 1. For each observation time ¢, we compute the
intermediate state H, by our residual update rule based on
the integration of H, (see line 3). After that, we compute

d
the current hiddend;tates using a MixRNN cell in line 4.
In other words, we update the hidden states upon new
observations X; by jointly considering the mixed-order
spatial dependencies and the continuous historical states.
During the training phase, we employ the same setting
(e.g., schedule sampling, optimizer, and loss) as MixRNN,
detailed in Sec. 4.3.

As fy determines the evolution of the hidden states, we
need to pay more attention to the design of fg. The simplest
way is a multi-layer perceptron (MLP) that updates a node’s
current state fully based on its previous state, rather than
considering the impacts of all nodes at each evaluate step.
We can also use a 2-layer GCN as fy to allow message
passing between a node and its neighbors at each residual
update, or employ a Mixer block to capture mixed-order
spatial relations at once. We test different settings of fy and
they achieve very similar performances on three real-world
datasets. Therefore, we represent f, as an MLP since we
have already modeled the spatial dependencies by the Mixer
block in the MixRNN cell. The other reason is to reduce
the computational costs and memory usage caused by the
message passing scheme like GCN.

Algorithm 1: The MixRNN+ algorithm

Input: Historical observations {X:}+=1...7,
Adjacency matrix A
Output: The hidden states {H; };=1...1
: Ho =0 b Initial hidden state
cfort=1...T do
H; = ResUpdate (fo, H;—1, (t — 1,1))
H, = MixRNN(X,, H;, A)
end for

S S
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5.4 Encoder-Decoder & Optimization

MixRNN+ shares the same manner to perform predictions
as MixRNN, i.e., using an encoder-decoder architecture. The
training strategy, including optimizer and schedule sam-
pling, is also identical. Given the prediction results YLT and
the ground truth Y;.,, we utilize MAE as the loss function
to train MixRNN+, computed as:

T N D’

1
L(©®)= WZZZ@W‘ = Ytij s

t=1i=1j=1

(16)
where © are all trainable parameters in our model.

5.5 Discussion
5.5.1 Comparison to Existing Methods

We appreciate the contributions of GCRNN and HGCRNN
in modeling spatio-temporal (ST) sequences, and build
our model based on them. Next, we emphasize how our
MixRNN+ differs. Additionally, we compare our method
with CNN-based approaches as well.

Comparison to GCRNNSs. In Sec. 1, we have introduced
two limitations of GCRNNSs in spatio-temporal forecasting:
1) GCRNNs have difficulty with addressing high-order
spatial relations; 2) GCRNNs have overlooked underlying
physical knowledge. To overcome these issues, we empower
the RNN-based methods by integrating the two proposed
components, including the Mixer block for capturing mixed-
order relations, and the residual update strategqy for learning
continuous hidden dynamics. In other words, our approach
is built on GCRNNs and our major contributions include
the two novel components.

Comparison to HGCRNNs. We draw inspiration from
HGCRNNSs to capture high-order relations using hyper-
graph convolutions, however, the branch of high-order
relation modeling in the Mixer block is not identical to
HGCRNN. The major difference is that our Mixer block con-
structs hypergraph structures adaptively depending on the
input data, whereas HGCRNN requires extensive human
engineering to obtain such structures (see Sec. 4.2.1). Be-
sides, the aggregation method in HGCRNN is based on an
averaging function, while ours uses matrix multiplication.

Comparison to CNN-based Methods. Besides RNN-based
methods, MixRNN+ differs from CNN-based methods (e.g.,
STGCN [2], Graph WaveNet [3], and MTGNN [60]) mainly
in the way it captures temporal dependencies. In terms of
spatial dependencies, the mixed-order relations consisting
of both pairwise and high-order relations are still less ex-
plored in the literature of CNN-based methods.

5.5.2 Can Residual Update Improve CNN-based Models?

It is worth noting that our residual update strategy can be
only integrated into RNN-based approaches, as it seeks to
infer continuous hidden dynamics between two observa-
tions (see the comparison between Figure 4 and 5). In the
CNN-based methods such as GWNet and MTGNN, there is
no state transformation between two consecutive time steps
(i.e., no internal state across different time steps), which
indicates such a strategy cannot be integrated into these
approaches for further improvements.
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6 EXPERIMENTS
6.1 Experimental Settings
6.1.1

To show the generalizability of the proposed models, we
evaluate them on three popular tasks in smart city efforts:

Tasks & Datasets

o Traffic speed forecasting: We first use a traffic benchmark
called METR-LA [1] to evaluate our approach. It reports
the 4-month readings of traffic speed from 207 loop detec-
tors on the highways of Los Angeles County. The traffic
speed readings are ranging from Mar 1st 2012 to Jun 30th
2012 and aggregated into 5-minute windows.

o Air quality prediction: We also adopt the Beijing Air Quality
Dataset (AirB]J) [7] for evaluation. Specifically, the concen-
tration of several air pollutants (e.g., PM3 5, SO2, and CO)
together with some meteorological readings (e.g., temper-
ature) are collected by 35 sensors every hour in Beijing. We
make predictions on the concentration of PMj 5, which is
the primary air pollutant in most cases [5], [6].

o Crowd flow forecasting: The TaxiNYC dataset derives from
taxi trajectories in New York City (NYC) [61]. The authors
partitioned NYC into 100 irregular regions based on the
technique of morphological image processing, and then
compute the crowd flow by projecting the GPS trajectories
into these regions. Here, we follow the authors to collec-
tively forecast the inflow and outflow of all regions.

Table 1 provides the details of the datasets. Following [1],
[3], we forecast the target series over the next 12 time steps
based on the previous 12 steps in all tasks. Each dataset
is partitioned in chronological order with 70% for training,
10% for validation and 20% for testing. We also combine
the inputs with the time of day to make predictions. Z-
score normalization is applied to the model inputs for
fast convergence. To construct the graphs, we compute the
network distances between sensors and build the adjacency
matrix using the thresholded Gaussian kernel method [1].

TABLE 1: Dataset statistics.

[ Dataset [ [ METR-LA AirB] TaxiNYC ]
Type Traffic speed Air quality Crowd flow
#Instances 34,272 28,752 48,121
# Interval 5 minutes 1 hour 1 hour
Start time 03/01/2012 08/20/2014 01/01/2011
End time 06/30/2012 11/30/2017 06/30/2016
#Nodes 207 35 100
#Edges 1,515 302 484
In/Output Dim 2/1 19/1 3/2

TABLE 2: Model characteristics. Cont. denotes continuous.

Spatial Temporal
Model Year pairwisep high-order discretep cont.
ARIMA 1970 v
VAR 2006 v v
STGCN 2018 v v
GWNet 2019 v v
MTGNN 2020 v v
FC-LSTM 1997 v
DCRNN 2017 v v
HGCRNN | 2020 v v
MixRNN 2021 v v v
MixRNN+ | 2021 v v v
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6.1.2 Baselines

We compare our model with eight baselines that belong to
the following three classes:

o Traditional data-driven models: ARIMA [36] and VAR
[37] are two well-known shallow autoregression models.

e CNN-based approaches: STGCN [2], Graph WaveNet
(GWNet for short) [3] and MTGNN [60] integrate GCNss
with 1D temporal convolutions to capture the spatio-
temporal dependencies. We also set them as baselines.

o RNN-based methods: Since our methods are based on
RNNSs, we compare them with the existing RNN-based
models introduced in Sec. 3.2.2, including FC-LSTM [62],
DCRNN [1] and HGCRNN [22].

In Table 2, we further present the characteristics of these
models. For example, ARIMA and FC-LSTM only consider
the recent time slots within each node while ignoring the
spatial correlations. CNN-based models including DCRNN,
GWNet and MTGNN can capture the pairwise relationships
but overlook higher-order relationships among multiple
nodes. Only MixRNN+ can jointly capture the mixed-order
spatial relations and the continuous temporal dynamics.

6.1.3 Implementation Details & Hyperparameters

Our Models. We implement our model by PyTorch 1.1 with
a Quadro RTX 6000 GPU, where the batch size is 64. The
learning rate starts from 0.01 and reduces to %0 at epoch 10,
40 and 70. For the hidden dimensionality F', we conduct a
grid search over {16, 32,64, 96,128}. As introduced in Sec.
5.3, the function fg for approximating the derivative is a
3-layer MLP with F' hidden units in each fully-connected
layer. Note that setting At is equivalent to specifying the
number of evaluations N, between observations. We set
N, to 10 in our experiments for a trade-off between per-
formance and speed. Since our model generates the hy-
pergraph structure through model training, we also test
different numbers of hyperedges (M) in our experiments.

Baselines. Next, we introduce the implementation details of
the deep-learning-based methods. On METR-LA, DCRNN,
STGCN, GWNet and MTGNN are the previous and recent
state-of-the-art methods. We therefore employ the default
settings by their authors on this dataset. For FC-LSTM, we
stack two LSTM layers and set the hidden dimensionality to
64. For HGCRNN without public code, we implemented it
by ourselves. To be more specific, we use stacked HGCRNN
with two layers, where the number of hidden units is 64.
As the baselines were not previously examined on AirBJ
and TaxiNYC, we search the best hyperparameters for them,
respectively. For the RNN-based approaches (FC-LSTM,
DCRNN and HGCRNN), we conduct a grid search over the
number of RNN layers (ranging from 1 to 3) and its hidden
dimensionality (over {16, 32,64, 128}). For the CNN-based
methods, we conduct a grid search for the number of
channels in their blocks over {16, 32,64, 128}. Besides, we
need to tune whether to utilize adaptive adjacency matrix
for GWNet and MTGNN. After tuning hyperparameters,
we observe that most of the methods have similar parameter
sizes on all these datasets, e.g., ranging from 200K to 400K
on AirBJ, with the only exception of STGCN which is a
simple yet effective model. Meanwhile, merely increasing
the parameter size (i.e., capacity) cannot always bring gains
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on the prediction tasks, because of the overfitting problem.
For example, using a STGCN with 528K parameters cannot
even outperform its small version with 179K parameters on
METR-LA.

6.1.4 Evaluation Metrics

We adopt two popular metrics in regression tasks [1], [3] to
evaluate the model performance, including mean absolute
error (MAE) and root mean squared error (RMSE). Smaller
metric scores indicate better model performance. We do not
use Mean Percentage Errors since there are a large number
of entries that equal to zero in the second and third dataset.
Missing values are excluded when calculating these metrics.

6.2 Model Comparison

For each dataset, we run each method 5 times and report the
mean results of 3, 6 and 12 step-ahead forecasting in Table 3.
To be fair, we present the best performance of each method
under different hyperparameter settings. For example, we
report MixRNN+ with F' = 64 and M = 60 on METR-LA.
It can be seen that MixRNN+ consistently outperforms
the baselines over both metrics in most cases, with the only
exception of for one entry on AirB]. These improvements
are significant according to the Student’s t-test at level
0.01. Such improvements are more obvious on long-term
forecasting since predicting a longer horizon (e.g., 12-step
ahead) is far more challenging than a shorter horizon (e.g.,
3-step ahead). From the table, we also have the following
observations. First, deep learning-based methods exhibit
much fewer errors than ARIMA /VAR due to their capabil-
ity of learning non-linear relationships. Second, FC-LSTM,
ODERNN and LatentODE perform much worse than other
DL methods, revealing the importance of capturing the spa-
tial dependencies in such applications. Third, MixRNN bests
DCRNN and HGCRNN over all future horizons, which
shows the superiority of our Mixer block that jointly models
the pairwise and high-order spatial relations. Meanwhile,
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we find that learning pairwise relations is more useful than
high-order relations on METR-LA and TaxiNYC, but obtain
the opposite results on AirB] by comparing DCRNN and
HGCRNN. This fact corroborates the motivation of using
our Mixer block for learning both of them. Despite the fact
that the CNN-based approaches like STGCN and GWNet
achieve higher accuracy than the RNN-based baselines
on the whole, MixRNN+ still outperform the CNN-based
models by virtue of coupling MixRNNs with the physical
laws. The results of MixRNN+ vs. MixRNN will be further
discussed later.

Additionally, we find that the baselines and the proposed
model perform similarly on short-term prediction, while
being distinctive on long-term prediction. Prior investiga-
tions have found similar observations (small gains on short-
term prediction) [2], [3], [60], [63]. The major reason, we
argue, is that the task of short-term prediction is much simpler
than long-term forecasting, which makes all models produce
extremely close results on short-term prediction. For an easy
task (predicting the value at the next time step), even a
very simple model such as an LSTM can achieve adequate
performance, i.e., the predictive accuracy between an easy
model and ours is not distinguishable. Conversely, when
predicting on a long-term horizon, the simple model finds
it incredibly difficult to compete with our models due to its
lower model capacity and worse generalization ability.
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Fig. 6: The prediction curves of our models on the 158-th
sensor on METR-LA. The y axis is the traffic speed (m/s).

TABLE 3: Model comparison of 12-step ahead prediction over the three datasets, where we use bold and underline fonts
to highlight the best and the second best performance, respectively. We train and test each method five times, and present
results using the format: “mean =+ standard deviation”.

[ Methods [ARIMA VAR | STGCN GWNet MTGNN [ FC-LSTM  DCRNN  HGCRNN [ MixRNN  MixRNN+ |

5 | MAE | 319 305[273+£001 268+001 269+001 [ 298002 273+£001 279+001 [ 265£001 263 =001

< RMSE| 596 584 | 529+001 515+002 5184002 | 592+0.02 5254002 541 +0.03 | 5.10=+0.02 5.06 =+ 0.02
| o | MAE[ 385 371 [313+£001 305+£001 305+001 [358+003 315+001 323+002 304001 3.00+0.01
= RMSE| 794 771 | 640+003 6.16+0.02 6.17+002 | 7.30 £0.06 638+0.03 6544003 | 6.16+0.02 6.08 = 0.03
= 1| MAE| 524 501 [356£001 353001 349+001 | 444003 369+0.02 376+001 | 348+ 001 342+ 001
RMSE| 997 955 | 7.50+£0.03 7.36+0.03 723+004 | 901 +007 7.67+004 7.81+0.04 | 728+0.03 7.16+ 0.02

5 | MAE | 1857 1635|13284027 12934031 129040351457 £059 1281+031 1270+ 0361285+ 027 1246 £ 0.29
RMSE | 3028 30.10 |24.36 + 0.24 23.98 + 0.36 24.01 + 0.33 |27.10 & 041 23.91 + 0.37 23.87 &+ 0.32 | 24.01 + 0.32 23.16 + 0.25

E ¢ | MAE | 2684 2485|18414025 1820 %037 183140322150 £059 19.08+072 18.60 + 037 [1820 £ 034 17.94 £ 0.30
< RMSE | 39.82 37.09 |32.97 040 32.91 + 0.46 33.01 + 0.41 | 37.43 + 0.70 34.60 + 0.43 33.38 £ 0.51 | 33.08 &= 0.42 32.74 + 0.45
1o | MAE | 3508 3373[2523+041 2501 £0.38 2496 0.46 3058 £0.71 27.24 %052 2529 £ 0.50 [25.24 £ 0.47 24.86 = 0.45
RMSE | 4994 48.80 4248 +0.71 42.31 + 0.64 42.05 & 0.82 | 47.28 £ 0.94 4551 + 0.80 44.84 4+ 0.77 | 42.47 + 0.67 42.11 + 0.75

5 | MAE | 3260 267919424035 19.46 %041 19.85+ 036 [2125+£0.65 2059 +045 2085+ 048 1973 £0.40 19.04 £ 0.36

U RMSE | 85.48 7225|4595+ 1.14 4822 + 1.32 50.28 + 1.26 | 53.65 + 1.89 50.70 4+ 1.40 52.19 -+ 1.28 | 49.82 & 1.33 43.69 + 1.39
E o | MAE | 3672 290421754034 22224047 2384+ 0422610+ 068 2403+ 044 2573+ 057 [2157 £ 044 20.58 £ 0.40
z RMSE | 98.40 78.74 |52.70 & 1.04 54.58 +1.26 57.09 + 1.19 | 65.84 & 1.94 59.04 + 1.58 64.89 & 1.45 | 52.54 & 1.39 50.47 & 1.31
= 1o | MAE [ 3931 3219[2330 £0.44 2372040 2409 +055[29.30 £ 0.81 26.80 £0.59 28.04 £ 0.54[24.30 £ 0.40 2210 £ 0.49
RMSE | 1104 858 |57.62+1.10 59.84 + 1.32 58.82 + 1.28 | 71.55 + 1.74 68.90 &+ 1.47 70.52 & 1.52 | 59.05 & 1.32 55.79 + 1.30
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6.3 Ablation Study

Next, we evaluate the effectiveness of each model compo-
nent. Unless otherwise specified, we report the average errors
of all future horizons in the following figures and tables.

6.3.1 Effect of Residual Update

Since MixRNN+ enhances MixRNN to possess continuous-
time dynamics, we analyze the results of them to demon-
strate the advantage of integrating our residual update strat-
egy. As illustrated in Table 3, MixRNN+ reduces the predic-
tion errors by a considerable gap in AirB] and TaxiNYC,
while it slightly outperforms MixRNN on METR-LA. The
major reason is the length of time interval: the time interval
on METR-LA is 5 minutes, which is much shorter than
the 1-hour interval on the other two datasets. With the
increase of the time interval, e.g., from 5 minutes to 1 hour, it
becomes more challenging for RNN models to conduct state
transformation between consecutive observations. In other
words, obtaining the continuous temporal changes between
observations becomes more necessary to help the modeling
of ST sequences when the time interval is larger.

Besides, we notice that MixRNN+ yields better perfor-
mance than MixRNN more clearly in long-term forecasting,
e.g., at the 12-step ahead horizon. To further investigate it,
we randomly select a sensor from METR-LA and conduct
a case study on it. Figure 6(a) and (b) depict 15 and 60
minute-ahead (i.e., 3 and 12 step-ahead) predicted values
vs. real values on a snapshot of the test data of this sensor,
respectively. By comparing these two figures, we find that
MixRNN+ outperforms MixRNN by a larger margin on the
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datasets, even though stacking 2 or 3 layers can bring slight
improvement, it requires far more GPU storage and induces
much higher computational costs. Therefore, we choose the
single-layer model as our default setting on these datasets.

TABLE 4: Effects of different number of layers. The metrics
are computed by averaging the errors across all future steps.

: METR-LA ArB) TaxiNYC
MixRNN+ | — A RMSE [ MAE  RMSE | MAE  RMSE
Tlayer 206 595 | 1771 3162 | 2035 50.14
2 layers 297 602 | 1772 3168 | 2021 5031
3 layers 302 604 | 17.69 3188 | 2047  50.56

6.3.2 Generalizability of Residual Update

Furthermore, we integrate our residual update strategy into
the RNN-based baselines for a more thorough comparison,
denoted as FC-LSTM+, DCRNN+ and HGCRNN+. From Ta-
ble 5, it can be seen that our residual update strategy brings
consistent gains across all the baselines, demonstrating its
broad generalizability. More importantly, our MixRNN+ still
surpasses the variants of baselines (e.g.,, HGCRNN+) by
a considerable margin on all datasets. These facts reveal
the necessity of addressing mixed-order relations in spatio-
temporal forecasting tasks.

TABLE 5: Comparison with RNN-based methods that incor-
porates the residual update. The error metrics are computed
by averaging the errors across all future time steps.

60 minute-ahead prediction, especially at the sudden change
(see the red rectangle in b). This is because the integration
of physical laws enables our model to capture the long-term
temporal dependencies more effectively.

As MixRNN+ is a variant of RNNs, we can learn from
RNNs to increase the model capacity by stacking multiple
MixRNN+ layers. According to the results in Table 4, the
performance of MixRNN+ on METR-LA is not very sensi-
tive to the number of stacked MixRNN+ layers. On the other

MAE

Self Self+Pair  Self+High ~ MixRNN+

(a) Results on METR-LA
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Method METR-LA AirBJ TaxiNYC
MAE RMSE | MAE RMSE | MAE RMSE
FC-LSTM 3.57 7.01 2120  36.11 26.83  66.12
DCRNN 3.15 6.27 18.85 33.02 | 2426  58.10
HGCRNN 3.22 6.45 18.27 3245 | 2542  63.39
MixRNN 3.00 6.06 18.03 31.98 | 21.42 53.77
FC-LSTM+ 3.54 6.95 2076 3492 | 2482 6150
DCRNN+ 3.09 6.14 18.62  32.81 2347 5496
HGCRNN+ 3.17 6.39 18.27  32.06 | 23.85 60.49
MixRNN+ 2.96 5.95 17.71  31.62 | 20.35 50.14
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<
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Fig. 7: Effect of different branches in the proposed Mixer block.
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6.3.3 Effect of Mixer Block

Learning mixed-order spatial relations is one of the key
challenges in ST prediction. We compare MixRNN+ with
its variants to investigate the effectiveness of each branch in
the Mixer block. Due to the page limit, we mainly discuss
the results of MAE in this part. In particular, we use Pair
and High to represent the two branches, respectively. By
turning off both of the branches, our model will degrade
to a standard GRU that ignores spatial relations, denoted as
Self. For example, MixRNN+ without HGCN for high-order
relation modeling can be denoted as self +pair. As depicted
in Figure 7, the variant that only captures the self relations
performs much worse than other variants in both tasks.
We also observe that it can achieve a large improvement
with the consideration of pairwise relations or high-order
relations. By jointly learning the pairwise and high-order
relations, our Mixer block can learn the complex relations in
ST data more effectively and achieve better performance.
To further verify its generalizability in other popular
architectures, we replace graph convolution layers in two
CNN-based models (STGCN and GWNet) with our Mixer
block for mixed-order relation modeling. Figure 8 presents
the comparison results, where the models with a postfix “+”
mean integrating our module. The consistent improvements
over the base models reveal that Mixer block can also be a
useful off-the-shelf plugin for the CNN-based methods.

6.3.4 Effect of Hypergraph Generation

One possible concern of the Mixer block is hypergraph
generation. Recall that the generation method introduced in
Sec. 4.2.1 is a sort of soft clustering, but we do not introduce
any objective function to guide the learning of the function
1 (a 2-layer GCN). Would this be a problem? To answer this
question, we add an auxiliary loss L, to Eq. 16. A natural
idea is to employ the spectral clustering loss [56] as L, to
enforce strongly-connected nodes to be grouped into the
same hyperedge. Meanwhile, it encourages the assignment
to be orthogonal to avoid sub-optimal solutions. We tune
the trade-off between the MAE loss L and L, and report
the best results in Table 6. From this table, it can be easily
seen that adding such auxiliary loss will not improve the
predictive performance. That is because strongly-connected
nodes sometimes perform disparately due to external fac-
tors. Adding this kind of regularizer might restrict the
model capacity [13]. By using GCNs for generating the
incidence matrix, our model already considers the inherent
proximity between nodes [13] as well as the real-time ob-
servations. Besides, tuning the trade-off parameter between
two loss functions is very hard and time-consuming. Thus,
we prefer not to use the auxiliary loss function for additional
guidance. Moreover, we compare MixRNN+ with its variant

TABLE 6: Evaluation on the hypergraph generation; Base:
MixRNN+; w. L,: MixRNN+ with an auxiliary loss for
spectral clustering; w. MLP: MixRNN+ with an MLP as ).

L METR-LA AirB] TaxiNYC

058 MAE RMSE | MAE RMSE | MAE  RMSE
Base 2.96 5.95 17.71 31.62 20.35 50.14
w. La 2.99 614 | 1801 3385 | 2076  51.69
w.MLP || 2.98 612 | 1805 3381 | 2063 5195
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that uses an MLP as ¢ (denoted as w. MLP in Table 6) for
hypergraph generation. The degraded performance (base
vs. w. MLP) reveals the importance of encoding spatial
proximity to the generation process.

6.3.5 Comparison with ResNet

To further compare ResUpdate with ResNet, we consider
the following models and variants for comparison:

o ResUpdate: it is equivalent to the proposed MixRNN+.

¢ ResNet-10: As mentioned in Sec. 6.1.3, we set N, = 10 for
a trade-off between speed and accuracy. Thus, we com-
pare MixRNN+ with a variant that replaces the residual
update between observations with an equivalent number
of residual layers (i.e., 10), denoted as ResNet-10. Note
that we use the identical neural designs in one layer of
ResNet and ResUpdate for fairness.

e ResNet-5: Noting that using 10 residual layers leads to
much more learnable parameters, we also explore a base-
line with 5 residual layers for comparison.

o ResNet-1: This variant replaces ResUpdate with only one
residual layer, which guarantees its parameter number
(model capacity) to be equal to MixRNN+.

« Base: The base model means MixRNN+ without the resid-
ual update strategy, namely MixRNN.

The prediction errors (MAE) of each method and their pa-
rameter numbers are shown in Table 7. The errors achieved
by ResNet-10/5/1 and Base are not distinctive, revealing
that simply stacking residual layers (for solving gradient
problems) cannot enhance model performance. However,
by using our ResUpdate, MixRNN+ considerably outper-
forms ResNet-10/5/1 even though these ResNet-based ap-
proaches have more parameters, e.g., ResNet-10 has around
twice the number of parameters than ResUpdate on META-
LA. This result demonstrates that the rationale between
ResUpdate and ResNet is totally different. ResUpdate com-
putes the instantaneous rate of change between observa-
tions via a deep neural network, thus leading to a more
natural and powerful modeling of real-world ST sequences.

TABLE 7: ResUpdate vs ResNet. MAEs are computed by
averaging the errors across all future time steps. #Param:
the number of trainable parameters (in thousands).

Method METR-LA AirBJ TaxiNYC
MAE #Param | MAE #Param | MAE #Param
ResUpdate 2.96 642 17.71 422 20.35 508
ResNet-10 3.04 1266 18.05 694 21.52 912
ResNet-5 3.04 876 18.08 524 21.45 660
ResNet-1 3.02 642 18.04 422 21.49 508
Base 3.01 487 18.10 354 21.49 407

6.3.6 Hyperparameter Study

Finally, we test the effect of the two major hyperparameters
in our model on the first two datasets, i.e., the number
of hyperedges M in the Mixer block and the hidden di-
mensionality F'. Figure 9(a) depicts how prediction errors
changes over M on the first two datasets. We observe that
our model achieves the lowest errors when M = 60 and 40
on them, respectively. When M is very small (such as 20), it
is hard to aggregate the nodes into such few hyperedges.
On the other hand, using a large number of hyperedges
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such as M = 100 also leads to higher errors since it makes
the node features over-smooth [21]. In terms of the hidden
dimensionality, /' = 64 shows superiority in both datasets.
As F increases, it will induce more model parameters and
may result in the overfitting problem. That is the reason
why F' = 96 and 128 perform worse than F' = 64. On the
contrary, using F' = 16 or F' = 32 causes the highest MAEs
in contrast to other variants as it restricts the model capacity.

17.9

- VETRLA [
-E- AirB)

-@- METR-LA
-E- AirB)
2.95 176 2.94 17.6

20 40 60 80 100 120 16 32
Number of hyperedges (M)

Number 06f4h\dden umgtz (F) e
Fig. 9: Effect of the two hyperparameters in the proposed
MixRNN+. (a) Study on the number of hyperedges M; (b)
Study on the number of hidden units F'.

6.4 Computation Time

Despite the good performance, we notice that adding the
residual update to MixRNN induces extra computational
overheads and lengthens training time. Hence, we conduct
a study on the training speed of the proposed models as
well as the competitive baselines from two perspectives: a)
training time per epoch and b) the epoch number of convergence.

Figure 10 presents the training time per epoch of each
approach. From this figure, we can observe that FC-LSTM
requires the least training time since it overlooks the spatial
information from neighbors. MixRNN achieves very close
speed to DCRNN and HGCRNN, while largely improving
the predictive performance in most cases (see Table 3).
Although MixRNN+ extends MixRNN to be physics-guided
by integrating the residual update strategy, it requires more
training time per epoch to compute the continuous states.
Thus, MixRNN+ is the priority when the application re-
quires higher prediction accuracy. In a time-sensitive appli-
cation, we prefer using MixRNN rather than MixRNN+.

In addition, we compare the epoch number of conver-
gence of these RNN-based approaches, where we employ
the same learning rate and scheduler for fairness (see Sec.
6.1.3). As shown in Table 8, MixRNN and MixRNN+ consis-
tently achieve the fastest or the second fastest convergence
speed among these methods. We argue that our models can
obtain more useful gradients for training by considering
both high-order and pairwise relations. Besides, we also
observe that the convergence epoch number of the three
baselines is not quite distinctive.

TABLE 8: Convergence epoch numbers of RNN methods.

Models METR-LA AirBJ TaxiNYC
FC-LSTM 76 21 72
DCRNN 68 25 65
HGCRNN 74 24 69
MixRNN 52 20 46
MixRNN+ 55 16 43
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Fig. 10: Computation time of the methods.

7 SYSTEM DEPLOYMENT

Being able to predict the crowd flows in each and every
part of a city, especially in irregular regions, is strategically
important for traffic control, risk assessment, and public
safety [64]. To solve this problem, we have upgraded the
previously deployed cloud-based system (UrbanFlow [61])
by using our MixRNN or MixRNN+ as the bedrock model
for the prediction. This system enables governors to monitor
the real-time crowd flows and forecast crowd flows in the
near future. Here, we briefly give an overview of the func-
tions of UrbanFlow. Figure 11 illustrates the main interface
of UrbanFlow, where each region on the map represents
an irregular urban area. The color of each cell indicates its
flow density, where “red” means dense and “green” means
sparse. A user can click any region on the interface to see the
flow details like Figure 11(b), including the ground truth as
well as the prediction results. In different scenarios, users
can specify to use MixRNN or MixRNN+ as the prediction
model in the red rectangle in Figure 11. By clicking the “play
button” at the bottom left of the main interface, we can
watch a movie of flow heatmaps. More details about the
system deployment can be found in [64].

l’J'rbarlr )
3|
L om
Vv a
B
(a) Systeﬁl‘i’r’lté’r"féc’e (b) Predictions of 2 regions
— Historical flows Predicted flows B —
%ﬂw’ i;#"‘ 2: !@:}W P w“ﬁ"i P \‘f! Bt fq
Pl ol S - R
BT b S Y| g ' |

(c) Flow images in the history and future

Fig. 11: The UrbanFlow system for crowd flow monitoring
and forecasting in irregular regions. We upgrade it using
our models as the bedrock model. (a) The main interface
of UrbanFlow. (b) An example of the prediction interface of
two regions. (c) A movie-style heatmap.
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8 CONCLUSION AND FUTURE WORK

We have presented the MixRNN+ for improving spatio-
temporal forecasting, a small step that may benefit a variety
of smart city applications. Specifically, we first propose an
intermediate model called MixRNN to capture the mixed-
order spatial relations as well as the temporal dependen-
cies. Then, by assuming that the dynamic system is driven
by reaction kinetics, we generalize MixRNNs to possess
continuous-time dynamics via a residual update strategy.
Our model has combined the flexibility of neural networks
with interpretability provided by physical laws. The ex-
periments on three real-world smart city applications have
demonstrated our state-of-the-art performance. We will re-
lease our source code for public use soon. In the future,
we plan to reduce the number of function evaluations in
the ODE solver while preserving the accuracy, as we have
noticed that the major efficiency bottleneck is the evaluation
between two observations. Another direction is to explore
how to integrate neural networks with more complex phys-
ical laws, such as second-order ODEs.

ACKNOWLEDGMENTS

This research is supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 2 under MOE’s offi-
cial grant number T2EP20221-0023, also supported by the
Beijing Nova Program (Z201100006820053), and the Beijing
Natural Science Foundation (4212021). H. Chen is supported
in part by the funding project of Zhejiang Lab under Grant
2020LCOPIO1. We thank all reviewers for their constructive
suggestions in improving this paper.

REFERENCES

[1] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,” arXiv
preprint arXiv:1707.01926, 2017.

[2] B.Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in
IJCAI, 2018.

[3] Z.Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet
for deep spatial-temporal graph modeling,” in IJCAI, 7 2019, pp.
1907-1913.

[4] Z. Pan, W. Zhang, Y. Liang, W. Zhang, Y. Yu, J. Zhang, and
Y. Zheng, “Spatio-temporal meta learning for urban traffic predic-
tion,” IEEE Transactions on Knowledge and Data Engineering, 2020.

[5] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li,
“Forecasting fine-grained air quality based on big data,” in KDD.
ACM, 2015, pp. 2267-2276.

[6] Z.Qi, T. Wang, G. Song, W. Hu, X. Li, and Z. Zhang, “Deep air
learning: Interpolation, prediction, and feature analysis of fine-
grained air quality,” IEEE TKDE, vol. 30, no. 12, pp. 2285-2297,
2018.

[7] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, “Geoman: Multi-
level attention networks for geo-sensory time series prediction,”
in IJCAI, 2018.

[8] X.Yi,]. Zhang, Z. Wang, T. Li, and Y. Zheng, “Deep distributed
fusion network for air quality prediction,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 965-973.

[9]1 Y. Liu, Y. Zheng, Y. Liang, S. Liu, and D. S. Rosenblum, “Urban
water quality prediction based on multi-task multi-view learning,”
in IJCAI, ser. IJCAT’'16, 2016, p. 2576-2582.

[10] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural
networks and robust time series prediction,” IEEE transactions on
neural networks, vol. 5, no. 2, pp. 240-254, 1994.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13

[11] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convo-
lutional recurrent neural network: A deep learning framework for
network-scale traffic learning and forecasting,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4883-4894,
2019.

[12] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and
H. Li, “T-gen: A temporal graph convolutional network for traffic
prediction,” IEEE Transactions on Intelligent Transportation Systems,
2019.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving for-
ward and inverse problems involving nonlinear partial differential
equations,” Journal of Computational Physics, vol. 378, pp. 686-707,
2019.

[15] L. A. Rossman and P. F. Boulos, “Numerical methods for modeling
water quality in distribution systems: A comparison,” Journal of
Water Resources planning and management, vol. 122, no. 2, pp. 137-
146, 1996.

[16] L. Monteiro, D. Figueiredo, S. Dias, R. Freitas, D. Covas, J. Menaia,
and S. Coelho, “Modeling of chlorine decay in drinking water
supply systems using epanet msx,” Procedia Engineering, vol. 70,
pp- 1192-1200, 2014.

[17] V. Alexandrov, A. Sameh, Y. Siddique, and Z. Zlatev, “Numerical
integration of chemical ode problems arising in air pollution
models,” Environmental Modeling & Assessment, vol. 2, no. 4, pp.
365-377, 1997.

[18] C. Lattanzio, A. Maurizi, and B. Piccoli, “Moving bottlenecks
in car traffic flow: a pde-ode coupled model,” SIAM Journal on
Mathematical Analysis, vol. 43, no. 1, pp. 50-67, 2011.

[19] Y. Chen, B. Yang, Q. Meng, Y. Zhao, and A. Abraham, “Time-series
forecasting using a system of ordinary differential equations,”
Information Sciences, vol. 181, no. 1, pp. 106-114, 2011.

[20] D.Zhou, J. Huang, and B. Schélkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in Advances in neural
information processing systems, 2007, pp. 1601-1608.

[21] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” in AAAI, vol. 33, 2019, pp. 3558-3565.

[22] ]. Yi and ]. Park, “Hypergraph convolutional recurrent neural net-
work,” in Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2020, p. 3366-3376.

[23] E. Haber and L. Ruthotto, “Stable architectures for deep neural
networks,” Inverse problems, vol. 34, no. 1, p. 014004, 2017.

[24] Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural
networks: Bridging deep architectures and numerical differential
equations,” in International Conference on Machine Learning. PMLR,
2018, pp. 3276-3285.

[25] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural ordinary differential equations,” in Advances in neural
information processing systems, 2018, pp. 6571-6583.

[26] L. Ruthotto and E. Haber, “Deep neural networks motivated by
partial differential equations,” Journal of Mathematical Imaging and
Vision, pp. 1-13, 2019.

[27] Y. Rubanova, R. T. Chen, and D. K. Duvenaud, “Latent ordi-
nary differential equations for irregularly-sampled time series,”
Advances in Neural Information Processing Systems, vol. 32, pp. 5320—
5330, 2019.

[28] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

[29] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transac-
tions on neural networks and learning systems, 2020.

[30] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in neural information processing systems, 2016, pp. 3844—
3852.

[31] J. Atwood and D. Towsley, “Diffusion-convolutional neural net-
works,” arXiv preprint arXiv:1511.02136, 2015.

[32] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive represen-
tation learning on large graphs,” arXiv preprint arXiv:1706.02216,
2017.

[33] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and
hypergraph attention,” arXiv preprint arXiv:1901.08150, 2019.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3222373

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[34]

[35]

[36]

[37]

(38]

(39]

[40]

(41]

[42]

(43]

[44]

(45]

[46]

(47]

[48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

C. F. Daganzo and J. A. Laval, “Moving bottlenecks: A numerical
method that converges in flows,” Transportation Research Part B:
Methodological, vol. 39, no. 9, pp. 855-863, 2005.

H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, ]J. Ye, and
L. Zhenhui, “Deep multi-view spatial-temporal network for taxi
demand prediction,” in AAAI, 2018.

G. E. Box and D. A. Pierce, “Distribution of residual autocorre-
lations in autoregressive-integrated moving average time series
models,” Journal of the American statistical Association, vol. 65, no.
332, pp. 1509-1526, 1970.

E. Zivot and J. Wang, “Vector autoregressive models for multi-
variate time series,” Modeling Financial Time Series with S-Plus®,
pp. 385-429, 2006.

W. Zhang, H. Liu, Y. Liu, J. Zhou, and H. Xiong, “Semi-supervised
hierarchical recurrent graph neural network for city-wide parking
availability prediction,” in AAAI, vol. 34, no. 01, 2020, pp. 1186-
1193.

J. Ye, L. Sun, B. Du, Y. Fu, and H. Xiong, “Coupled layer-wise
graph convolution for transportation demand prediction,” arXiv
preprint arXiv:2012.08080, 2020.

S. Fang, Q. Zhang, G. Meng, S. Xiang, and C. Pan, “Gstnet: Global
spatial-temporal network for traffic flow prediction.” in IJCAI,
2019, pp. 2286-2293.

M. Zhang, T. Li, H. Shi, Y. Li, P. Hui ef al., “A decomposition ap-
proach for urban anomaly detection across spatiotemporal data,”
in IJCAI, 2019.

X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu,
“Spatiotemporal multi-graph convolution network for ride-hailing
demand forecasting,” in AAAI vol. 33, no. 01, 2019, pp. 3656-3663.
C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-
attention network for traffic prediction,” in AAAI vol. 34, no. 01,
2020, pp. 1234-1241.

R. Huang, C. Huang, Y. Liu, G. Dai, and W. Kong, “Lsgcn: Long
short-term traffic prediction with graph convolutional networks,”
in IJCAI, 7 2020, pp. 2355-2361.

F. Xu, Y. Li, and S. Xu, “Attentional multi-graph convolutional
network for regional economy prediction with open migration
data,” in KDD, 2020, pp. 2225-2233.

A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided
neural networks (pgnn): An application in lake temperature mod-
eling,” arXiv preprint arXiv:1710.11431, 2017.

X. Jia, A. Karpatne, J. Willard, M. Steinbach, J. Read, P. C. Hanson,
H. A. Dugan, and V. Kumar, “Physics guided recurrent neural
networks for modeling dynamical systems: Application to mon-
itoring water temperature and quality in lakes,” arXiv preprint
arXiv:1810.02880, 2018.

E. De Bézenac, A. Pajot, and P. Gallinari, “Deep learning for phys-
ical processes: Incorporating prior scientific knowledge,” Journal
of Statistical Mechanics: Theory and Experiment, vol. 2019, no. 12, p.
124009, 2019.

R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, “To-
wards physics-informed deep learning for turbulent flow predic-
tion,” in KDD, 2020, pp. 1457-1466.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770-778.

F. Zhou, L. Li, K. Zhang, G. Trajcevski, F. Yao, Y. Huang, T. Zhong,
J. Wang, and Q. Liu, “Forecasting the evolution of hydropower
generation,” in KDD, 2020, pp. 2861-2870.

F. Zhou and L. Li, “Forecasting reservoir inflow via recurrent
neural odes,” in AAAI, 2021.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in NIPS, 2014, pp. 3104-3112.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder—decoder for statistical machine
translation,” in EMNLP, 2014, pp. 1724-1734.

H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic predic-
tion,” in AAAI, vol. 33, 2019, pp. 5668-5675.

F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering
with graph neural networks for graph pooling,” in International
Conference on Machine Learning. PMLR, 2020, pp. 874-883.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sam-
pling for sequence prediction with recurrent neural networks,” in

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[59]

[60]

[61]

[62]

[63]

[64]

[ S—

2

14

Advances in Neural Information Processing Systems, 2015, pp. 1171-
1179.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Con-
necting the dots: Multivariate time series forecasting with graph
neural networks,” in KDD, 2020, pp. 753-763.

J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting
citywide crowd flows in irregular regions using multi-view graph
convolutional networks,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.

S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based
spatial-temporal graph convolutional networks for traffic flow
forecasting,” in AAAI, vol. 33, 2019, pp. 922-929.

J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li, “Predicting city-
wide crowd flows using deep spatio-temporal residual networks,”
Artificial Intelligence, vol. 259, pp. 147-166, 2018.

9

Yuxuan Liang is now a PhD student in School of
Computing at National University of Singapore.
He has published over twenty papers in the ref-
ereed conferences and journals, such as KDD,
TKDE, NeurlPS, WWW, IJCAI, AAAI, MM and
UbiComp. He previously worked as a Research
Intern at Microsoft Research, Beijing, China and
JD.COM, Beijing, China. His research interests
lie in deep learning, machine learning, and their
applications in urban areas.

Kun Ouyang is a PhD with major in Computer
Science graduated from the National University
of Singapore (NUS). He is now working in E-
commerce advertising strategy and algorithms.
He was also a research scholar in SAP Sin-
gapore. His research interests include spatial-
temporal data mining and deep learning, with ap-
plications in human mobility analytics and online
advertising respectively.

Yiwei Wang is currently a PhD student majored
in Computer Science at National University of
Singapore. He has published papers in the con-
ferences and journals, including KDD, WWW,
IJCAI, ICDM, ECML-PKDD, ECCV, ISSRE, and
TSP. He previously worked as a Research In-
tern at Tencent, Shenzhen, China. His current
research focuses on Graph Neural Network, and
its applications in Natural Language Processing
and Recommendation.

\



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3222373

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Zheyi Pan is a computer science Ph.D. candi-
date in Apex Data & Knowledge Management
Lab, Department of Computer Science, Shang-
hai Jiaotong University, supervised by Prof. Yong
Yu. He received his B.E. degree from Zhiyuan
College, Shanghai Jiao Tong University in 2015.
His research interests include deep learning and
data mining with a special focus on urban com-
puting and spatio-temporal data.

Yifang Yin received the B.E. degree from the
Department of Computer Science and Technol-
ogy, Northeastern University, Shenyang, China,
in 2011, and received the Ph.D. degree from the
National University of Singapore, Singapore, in
2016. She is currently a senior research fellow
with the Grab-NUS Al Lab at the National Uni-
versity of Singapore. She worked as a Research
Intern at the Incubation Center, Research and
Technology Group, Fuji Xerox Co., Ltd., Japan,
from October, 2014 to March, 2015. Her re-
search interests include machine learning, spatiotemporal data mining,
and multimodal analysis in multimedia.

Hongyang Chen (Senior Member, IEEE) re-
ceived his B.S. and M.S. degrees from South-
west Jiaotong University, China, in 2003 and
2006, and Ph.D. degree from University of Tokyo,
Japan, in 2011. He is currently a Senior Re-
search Expert with Zhejiang Lab, China. He has
authored 100+ refereed journal and conference
papers in ACM Sensor Networks, IEEE TSP,
IEEE TWC and IEEE ICC. His research inter-
ests include loT, data-driven intelligent systems,
machine learning, locationbased big data, and
statistical signal processing.

Junbo Zhang (Member, IEEE) is a Senior Re-
searcher of JD Intelligent Cities Research. He is
leading the Urban Al Product Department of JD
iCity at JD Technology, as well as Al Lab of JD
Intelligent Cities Research. His research inter-
ests include Spatio-Temporal Data Mining and
Al, Urban Computing, Deep Learning, Federated
Learning. He has published over 50 research pa-
pers (e.g., Al Journal, IEEE TKDE, KDD, AAAI,
IJCAI, WWW, ACL, UbiComp) in refereed jour-
nals and conferences. He serves as an Asso-
ciate Editor of ACM Transactions on Intelligent Systems and Technology.
He received the ACM Chengdu Doctoral Dissertation Award in 2016, the
Chinese Association for Atrtificial Intelligence (CAAI) Excellent Doctoral
Dissertation Nomination Award in 2016, the Si Shi Yang Hua Medal
of SWJTU in 2012, and the Outstanding Ph.D. Graduate of Sichuan
Province in 2013. He is a senior member of CCF (China Computer
Federation), a member of IEEE and ACM.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

15

Yu Zheng (Fellow, IEEE) is the Vice President
of JD.COM and head JD Intelligent Cities Re-
search. Before Joining JD.COM, he was a senior
research manager at Microsoft Research. He
currently serves as the Editor-in-Chief of ACM
Transactions on Intelligent Systems and Tech-
nology and has served as the program co-chair
of ICDE 2014 (Industrial Track), CIKM 2017 (In-
dustrial Track) and IJCAI 2019 (industrial track).
He is also a keynote speaker of AAAI 2019, KDD
2019 Plenary Keynote Panel and IJCAI 2019
Industrial Days. His monograph, entitled Urban Computing, has been
used as the first text book in this field. In 2013, he was named one of the
Top Innovators under 35 by MIT Technology Review (TR35) and featured
by Time Magazine for his research on urban computing. In 2016, Zheng
was named an ACM Distinguished Scientist and elevated to an IEEE
Fellow in 2020 for his contributions to spatio-temporal data mining and
urban computing.

David S. Rosenblum (Fellow, IEEE) is Provost’s
Chair Professor of Computer Science at the Na-
tional University of Singapore (NUS). His re-
search interests span many problems in soft-
ware engineering, distributed systems and ubig-
uitous computing, and his current research fo-
cuses on probabilistic verification, uncertainty in
software testing, and machine learning. He is
a Fellow of the ACM and IEEE and was previ-
ously Editor-in-Chief of the ACM Transactions on
Software Engineering and Methodology (ACM
TOSEM) and Chair of the ACM Special Interest Group in Software En-
gineering (ACM SIGSOFT). He has received two "test-of-time” awards
for his research papers, including the ICSE 2002 Most Influential Paper
Award for his ICSE 1992 paper on assertion checking, and the inaugural
ACM SIGSOFT Impact Paper Award in 2008 for his ESEC/FSE 1997
on Internet-scale event observation and notification (co-authored with
Alexander L. Wolf). He also received the ACM SIGSOFT Distinguished
Service Award in 2018.

Roger Zimmermann (Senior Member, |IEEE)
received the M.S. and Ph.D. degrees from the
University of Southern California (USC), in 1994
and 1998, respectively. He is a Professor with
the Department of Computer Science, National
University of Singapore (NUS). He is also the
Deputy Director with the Smart Systems Insti-
e tute (SSI) and a Key Investigator with the Grab-
NUS Al Lab. He has coauthored a book, seven
g patents, and more than 300 conference publi-
cations, journal articles, and book chapters. His
research interests include streaming media architectures, multimedia
networking, applications of machine/deep learning, and spatial data
analytics. He is currently an Associate Editor for IEEE MultiMedia, Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMM) (ACM), Multimedia Tools and Applications (MTAP) (Springer),
and the IEEE Open Journal of the Communications Society (OJ-COMS).
He is a distinguished member of the ACM and a senior member of the
IEEE.




