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Abstract—Recommender system can provide users with the required information accurately and efficiently, playing a very important role in
improving users’ life experience. Although knowledge graph-based recommender system can solve the sparsity and cold start problems faced
by traditional recommender system, it cannot handle the cross-domain cold start problem and cannot provide multi-domain recommendations.
Therefore, this paper focuses on multi-domain item-item (I2I) recommendation based on cross-domain knowledge graph embedding by analyzing
the association between items of the same domain and the interaction between items of diverse domains with the aid of knowledge graph that
contains rich information. Firstly, a cross-domain knowledge graph chiasmal embedding approach is proposed to efficiently interact all items in
multiple domains. To help achieve both homo-domain embedding and hetero-domain embedding of items, a binding rule is put forward. Secondly,
a multi-domain I2I recommendation method is presented to efficiently recommend items in multiple domains, which is a recommendation method
based on link prediction of knowledge graph. Finally, the proposed methods are compared and analyzed with some benchmark methods using
two datasets. The experimental results show that the proposed methods achieve better link prediction results and multi-domain recommendation
results.

Index Terms—Recommender system, Multi-domain recommendation, Item-item recommendation, Knowledge graph embedding.
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1 INTRODUCTION

W ITH the explosion of data on the Internet, recommenda-
tion system is playing a crucial role in a wide variety

of information domains, such as e-commerce (e.g. Alibaba and
Amazon), multi-media (e.g. MovieLens and Douban), and social
network (e.g. Twitter and Facebook). Recommender system
not only enhances users’ life experience, but also facilitates
commerce business. Recommendation algorithm is the core of
recommendation system. As a basic research mode of recom-
mendation algorithm, item-item (I2I) recommendation tackles
the problem of how to recommend items with high relevance
for a given item [1]. I2I recommendation is widely used in real
life, for instance, when a user has clicked/downloaded an item
on a multi-media platform, the ”You may also like” will appear
on the platform to make recommendations for the user.

For I2I recommendation, the two most classical approaches
are the collaborative filtering approach [2], [3] and the content-
based approach [4], [5]. Item-based collaborative filtering meth-
ods recommend similar items to users based on their historical
behavior (clicks, ratings, etc.) on the items. The drawback of
this approach is that there is a cold start problem for new
items, i.e., new items cannot be recommended. On the other
hand, content-based methods directly recommend items with
high similarity for users by calculating the similarity of between
items. Although these methods can avoid the cold-start problem
for new items, the similarity between items is difficult to be
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accurately defined. To address the above problem, some ap-
proaches use knowledge graph as supplementary information
for recommendation [6], [7]. Recommender systems that incor-
porate knowledge graphs containing large-scale information can
not only alleviate the cold start problem for new items, but also
accurately measure the similarity between items by analyzing
knowledge graphs, such as knowledge graph embedding.

However, these recommendation methods are single-domain
recommendations, which suffer from cross-domain cold start
problem. Specifically, the single-domain recommendation can-
not recommend the item from another domain for a user based
on the his/her preferences in a domain. For instance, a novel
cannot be recommended to a user based on the his/her music
listening records. Therefore, some multi-domain recommenda-
tion methods have been proposed to study the mutual enhance-
ment of knowledge between different domains [8], [9]. Figure
1 shows an example of a recommendation with items from
multiple domains, namely music, movie and fiction. For the
man, I:Music3, I:Movie2 and I:Fiction3 are recommended to him
based on his favorite movie I:Movie∗. The immediate reason is
that I:Movie∗ and I:Movie2 are both science fiction films and
use the same music I:Music3, and I:Movie2 is a film adaptation
of I:Fiction3. Similarly, we recommend to a woman I:Fiction2,
I:Fiction3, I:Movie2 and I:Movie3 based on her preferred novel
I:Fiction∗ on similar grounds. The existing multi-domain rec-
ommendation methods are based on the extension of single-
domain recommendation methods, which ignore the distinction
and association of items between various domains in the real
world. For example, a social media content enhanced framework
based on the underlying assumption of collaborative filtering
was proposed to perform multi-domain recommendation [8].

To address the above problems, the main goal of this pa-
per is to study multi-domain I2I recommendation based on
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Fig. 1. An example of multi-domain recommendation. ∗ stands for items that
the user likes or has interacted with. I: denotes the item, O: indicates other
information such as the attributes of the item, and r: shows the relation
between the item and the item or the relation between the item and other
information. Sci-Fi is an abbreviation for science fiction and SFF is science
fiction film.

cross-domain knowledge graph embedding. It not only can
explore the similarity between items, but also can tackle the
new items cold-start and cross-domain cold-start problems.
However, multi-domain I2I recommendation based on cross-
domain knowledge graph embedding faces two challenges. One
challenge is how to embed cross-domain knowledge graph?
Specifically, entity embedding and relation embedding in cross-
domain knowledge graph should contain information of mul-
tiple domains, and the information of different domains can be
distinguished. For example, in Figure 1, how can the embedding
of the entity I:Fiction3 be enhanced by using the music infor-
mation I:Music3 and the movie information I:Movie3? Another
challenge is how to design a reasonable multi-domain I2I rec-
ommendation method based on knowledge graph embedding.
Specifically, for a seed item, how to establish a reasonable
connection between it and other items in multiple domains
for recommendation decision rather than simply calculating the
inner product between item vectors. For instance, in Figure 1,
although the embeddings of I:Music2 and I:Fiction3 have low
similarity, there may exist a link (relation) to connect them
together.

To meet these challenges, we design a novel cross-domain
knowledge graph embedding method and a multi-domain I2I
recommendation method. In summary, our contributions are
shown below.

• A cross-domain knowledge graph chiasmal embedding
(CDKG-CE) method is proposed to efficiently distinguish
and associate all items in multiple domains. Besides,
a binding rule is proposed to achieve the interaction
between multiple domains, thereby reaching the goal
of homo-domain embedding and hetero-domain embed-
ding.

• The link prediction of knowledge graph is applied to
recommendation method and a multi-domain I2I rec-
ommendation (MD-I2IR) is proposed. First, this is the

first time that knowledge graph is applied to solve the
multi-domain I2I recommendation problem; second, link
prediction is a downstream application of knowledge
graph, and this is the first time that link prediction is
applied to implement a specific recommendation process.

• Experiments are conducted on two datasets to evaluate
the performance of the proposed CDKG-CE and M-
DI2IR. The experimental results show that CDKG-CE and
MDI2IR are better than the corresponding benchmark
methods in terms of knowledge graph embedding and
recommendation methods respectively. Moreover, the
proposed MDI2IR method demonstrates the superiority
of cross-domain recommendation over the recommended
items distribution of the benchmark methods.

The remaining of the paper is organized as follows. Relat-
ed work on knowledge graph embedding, knowledge graph-
based recommendation and multi-domain recommendation are
presented in Section 2. Section 3 presents some definitions and
task description. Section 4 details the proposed CDKG-CE and
Section 5 provides the algorithm of MD-I2IR. The experimental
results of CDKG-CE and MD-I2IR on two datasets are discussed
in Section 6. Conclusion and future work are given in Section 7.

2 RELATED WORK

2.1 Knowledge graph embedding

Knowledge graph (KG) is a practical method that can denote
large-scale information from multiple fields. Specifically, the KG
is a set consisting of numerous knowledge triples < eh, r, et >,
i.e., KG = {< eh, r, et > |eh, et ∈ E, r ∈ R}, where eh and
et are head entity and tail entity in the knowledge triple, and
r is the relation in the knowledge triple, E represents the set
of entities and R shows the set of relations. Each knowledge
triple < eh, r, et > means a fact of the relation r from entity eh
to entity et. For example, < Da V inci, painted,Mona Lisa >
describes the case that Mona Lisa is painted by Da Vinci. Due to
its strong expressive ability and flexibility in reuse, knowledge
graph is widely employed in many application fields, such as
natural language understanding [10], [11], question answering
systems [12], [13] and recommendation systems [14], [15].

To efficiently apply the knowledge graph to various fields,
the knowledge graph embedding (KGE) method is commonly
used to embed KG into a low-dimensional space. KGE can quan-
tify KG by its semantic meaning or high-order proximity, while
retaining its inherent characteristics [16]. The existing knowl-
edge graph embedding methods can be roughly divided into
geometry-based method and deep learning-based method. The
geometry-based method interprets the relation as the geometric
transformation of the entity in the latent space. Specifically,
TransE regards the relation r as the translation between the
head entity eh and the tail entity et in Cartesian coordinates [17].
After that, a large number of variant methods based on TransE
are introduced to improve the effect of knowledge graph em-
bedding. For example, TransH deals with one-to-many, many-
to-one, and many-to-many complex relations [18] and TransD
enables each entity to have a different representation under
diverse relations [19]. The deep learning-based method learns
the representation of the head entity and relation to make it
closer to the representation of the tail entity. Dettmers et al.
propose ConvE based on 2D convolutional neural network to
predict the relation of the knowledge graph [20]. Based on
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the ConvE method, ConvKB is put to perform representation
learning for each item of knowledge triple [21], and CapsE
is presented to generate a continuous vector to measure the
credibility of knowledge triple [22].

Some well-known knowledge bases, such as YAGO [23],
Freebase [24] and DBpedia [25] are cross-domain knowledge
graphs, and they all contain thousands of knowledge. However,
these knowledge bases include too many domains and the
knowledge in each domain is unevenly distributed. None of
the existing methods consider the differences and similarities
between domains when embedding these knowledge triples.
Therefore, cross-domain knowledge graph representation re-
mains to be studied.

2.2 Knowledge graph-based recommendation

In recent years, a large quantity of methods that utilize knowl-
edge graphs as additional information for recommendation have
been presented [6], [7], [26]. These methods not only alleviate the
data sparsity and cold start problems in recommender systems,
but also achieve more accurate and interpretable recommen-
dations [16]. Knowledge graph-based recommendation can be
broadly considered into two categories, i.e., knowledge graph
embedding-based approach and meta-path-based approach.

The knowledge graph embedding-based approach can be re-
garded as a multi-task learning approach to some extent, which
considers knowledge graph embedding and recommendation
as two tasks. The knowledge graph embedding can improve
the accuracy and interpretability of the recommendation sys-
tem, while the recommendation system can help the knowl-
edge graph achieve further completeness [27]. Some methods
learn these two tasks sequentially. Wang et al. propose a deep
knowledge-aware network for recommending news, which first
extracts the features of the knowledge graph through KGE and
then constructs a recommendation model based on convolution-
al neural network (CNN) and attention mechanism [28]. Some
methods perform joint learning for these two tasks. Specifically,
these methods incorporate users and items as entities in the
knowledge graph to form a heterogeneous knowledge graph
and embed them in the heterogeneous knowledge graph. Sun et
al. design a multi-modal knowledge graph attention network to
better enhance the recommender system by exploiting multi-
modal knowledge [14]. The approach applies a multi-modal
graph attention technique to propagate information over the
knowledge graph and then uses an aggregated embedding
representation to make recommendations. Some methods learn
alternatively for these two tasks. Considering the overlap be-
tween the entities of the knowledge graph and the items of the
recommender system, a multi-task learning approach, which is a
deep end-to-end framework, is employed for knowledge graph-
enhanced recommendation [29].

Meta-path-based approach designs pre-defined format and
length meta-paths on heterogeneous knowledge graph to cap-
ture the diverse semantics carried by the knowledge graph.
Some studies exploit the relationships between items to improve
recommendation quality. Yu et al. present a recommendation
framework based on matrix decomposition (Hete-MF), which
extracts multiple different meta-paths and calculates item-item
similarity in each meta-path [30]. Some studies model user-
user or user-item relationships through meta-paths. Luo et al.
propose a collaborative filtering recommendation method based

on heterogeneous social network, which models user-item, user-
user, and item-item connections by meta-path based similarity
[31]. Subsequently, considering that meta-path-based approach
relies heavily on hand-crafted feature and domain knowledge,
some studies have combined knowledge graph embedding-
based approach with meta-path-based approach to avoid this
problem. Sun et al. introduce a recursive knowledge graph em-
bedding approach (RKGE) for automatically learning semantic
representations of entities and inter-entity paths to characterize
users’ preferences for products, which employs a novel recurrent
network architecture to model the semantics of paths connecting
the same entity pairs [32].

Although many knowledge graph-based recommendation
models have been proposed, there are still some further chal-
lenges. For example, multi-domain recommendation based on
knowledge graph and dynamic recommendation based on
knowledge graph are still to be studied. In this paper, we focus
on applying cross-domain knowledge graphs to achieve multi-
domain recommendations to users.

2.3 Multi-domain recommendation

Single-domain recommendation usually suffers from sparsity
and cold-start problems. To solve the above problems, researches
on mutual enhancement of knowledge between different do-
mains have been performed [8], [33], [34], which are called
multi-domain recommendation method. Multi-domain recom-
mendation recommends multiple items from various domains to
the user, which is different from cross-domain recommendation.

Cross-domain recommendation recommends items from the
source domain to users in the target domain. Assuming that
IAi is the ith item in the domain A, the cross-domain recom-
mendation will recommend user an item in the domain B that
is different from the domain A. State-of-the-art cross-domain
recommendation methods usually learns the features of items in
different domains separately, and then performs feature inter-
action on these items to achieve inter-domain associations [35],
[36]. The interaction step in these methods is often computed
using item similarity [37]. Zhong et al. design an autoencoder
framework with an attention mechanism for cross-domain rec-
ommendation [38]. The framework uses autoencoder, multilayer
perceptron, and self-attention to extract user and item features,
and fuse user-latent factors from different domains. Man et
al. study the cross-domain recommendation problem from the
perspective of embedding and propose an embedding-and-
mapping framework, which can learn cross-domain mapping
function and clearly distinguish between domain-specific factor
and domain-sharing factor [39]. In order to avoid leaking user
privacy during data sharing, Gao et al. design a new neural
attention transfer recommendation model, which only shares
the information of the project party and does not share user
behavior data [40].

However, the goal of multi-domain recommendation is to
leverage the shared knowledge of multiple domains to alle-
viate data sparsity in all domains [33]. Assuming that IAi is
the ith item in domain A, multi-domain recommendation will
recommend both the non-ith item in domain A and the item in
domain B to users. Zhang et al. propose an active learning rec-
ommendation strategy that considers both domain-specific and
independent knowledge of all domains to alleviate data sparsity
in multi-domain scenarios [33]. Liao et al. present a multi-
domain topic-guided session recommender that incorporates
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Fig. 2. The proposed cross-domain knowledge graph chiasmal embedding method.

a neural latent topic component in the sequence-to-sequence
model to better guide response generation [41]. A convolutional
neural network based multi-domain product recommendation
algorithm is proposed to achieve better recommendations by
leveraging user reviews and multi-domain co-consumption pat-
terns [42].

In general, existing works on multi-domain recommendation
are based on extensions of classical single-domain recommen-
dation methods, i.e., collaborative filtering and content-based
approaches. Factually, the items between different domains are
correlated in the real world. Considering that knowledge graph
can effectively represent large-scale information from multiple
domains, we apply knowledge graphs of diverse domains to
effectively distinguish and connect all items in multiple domains
to achieve accurate item-item recommendation in this paper.

3 PRELIMINARY

In this section, we provide the definitions of cross-domain
knowledge graph, cross-domain knowledge graph embedding,
multi-domain recommendation and the description of the task.
We set the number of domains k to 3 to present the proposed
approach more briefly and clearly. These k = 3 domains are
denoted by (A), (B) and (C) respectively.

3.1 Definition
Definition1 Cross-domain knowledge graph (CDKG). Dis-
tinguishing from large-scale cross-domain knowledge graphs
such as YAGO [23], Freebase [24] and DBpedia [25], we de-
fine the cross-domain knowledge graph with clearer domain
information. A cross-domain knowledge graph is a collection
of knowledge triples with entities and relations from multiple
deterministic domains, i.e., CDKG = {< h, r, t > |h, t ∈ E, r ∈
R,E = E(A)

⋃
E(B)

⋃
· · · , R = R(A)

⋃
R(B)

⋃
· · · }. E(A) and

R(A) denote the set of entities and the set of relations of the
domain (A), respectively. E and R represent the set of entities
and the set of relations of all domains, respectively. h, t and r
refer to head entity, tail entity as well as relation, respectively.

Definition2 Cross-domain knowledge graph embedding
(CD-KGE). Without loss of generality, the CD-KGE embeds the
cross-domain knowledge graph into a low-dimensional space,
and the embedded entity vector e ∈ Rd, and the relation vector
r ∈ Rd both contain information about k domains. In this paper,
we use d to express the vector dimensionality of CD-KGE.

Definition3 Multi-domain item-item recommendation
(MD-I2IR). Multi-domain recommendation recommends items
of multiple domains to the user. Specifically, based on the seed
item Iu that the user u prefers to, the multi-domain item-item
recommendation method recommends to the user the set of
items that are similar to Iu from multiple domains.

3.2 Task Description
The multi-domain recommendation task in this paper is formu-
lated as follows. Input: Knowledge graph of multiple domains
KG(A), KG(B) and KG(C), seed item Iu ∈ E and the set of
target items to be recommended Itarget ⊂ E. Output: Based on
Iu, the scores are computed for the triples formed by ∀r ∈ R
and ∀Ii ∈ Itarget, and the set I = {Ii}top@m of the top m items
with the highest scores is outputted.

4 CROSS-DOMAIN KNOWLEDGE GRAPH CHIASMAL
EMBEDDING

This section presents the proposed cross-domain knowledge
graph chiasmal embedding (CDKG-CE) method in detail, which
is capable of fusing single-domain and cross-domain informa-
tion of knowledge graphs. Figure 2 illustrates the framework of
CDKG-CE method, which consists of three main components: 1)
initialization of embedding; 2) cross-domain chiasma of embed-
ding; and 3) convolution of embedding.

4.1 Initialization of embedding
TransE is a knowledge representation learning method based on
translation model, which considers the relation r as a translation
relation between the head entity h and the tail entity t, i.e.,
h + r ≈ t [17]. Firstly, TransE made up for the weaknesses
of the traditional method that training is complicated and not
easy to expand. Secondly, TransE, as the basis of knowledge
base vectorization, has derived many variants, such as TransH
[18] and TransD [19]. In this paper, we use TransE to initial-
ize the embedding of the knowledge triples for each domain.
Compared to random initialization, this not only speeds up
the convergence of the proposed CDKG-CE method, but also
improves the performance of embedding. It is worth noting that
if an entity e or relation r appears in multiple domains at the
same time, there are multiple embeddings of it that will be
output after the initialization embedding. We use average fusion
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to fuse multiple initialization embeddings of entity e or relation
r.

e =
1

k
(eini(A) + eini(B) + · · · ),

r =
1

k
(rini(A) + rini(B) + · · · ),

(1)

where eini(A) and rini(A) denote the initialized embedding of entity
and relation in the knowledge graph KG(A), respectively.

4.2 Cross-domain chiasma of embedding

In the cross-domain knowledge graph, each entity e ∈ E can
exist in diverse domains, and each relation r ∈ R can link
not only two entities in the same domain but also two entities
in different domains. Hence, the main goal of cross-domain
knowledge graph embedding is to explore entity embedding
and relation embedding that can contain information from mul-
tiple domains, and each domain information of the embedding
can be distinguished and interacted. To address this challenge,
we propose a cross-domain chiasmal embedding approach for
cross-domain knowledge graph, which mainly consists of two
steps: embedding cutting and embedding chiasmal.

Domain A

Domain B

Domain C

e = [e(1), e(2),  , e(d)]=[e(A), e(B), e(C)]

r = [r(1), r(2),  , r(d)]=[r(A), r(B), r(C)]

r(A)

A   B   

A   C   

r(B)

B   A    
B   C    

r(C)

C   A    

C   B    

A   A    

B   B

C   C

Fig. 3. Embedding cutting and the meaning of segmented embeddings in
cross-domain knowledge graph.

Embedding cutting. The embedding cut method has been
applied to knowledge graph embedding [43] by Xu et al. In-
spired by the SEEK method [43], we cut the entity vector e
and the relation vector r into k segments with equal number
of elements, as shown in Figure 3. Each segment vector of entity
e denotes information in a domain, e.g., e(A) represents the
segment embedding of entity e in the domain (A). Obviously,
the embedding e = [e(A), e(B), e(C)] of the entity e contains the
information of all domains. Each segment vector of the relation
r stands for both intra-domain linking information and inter-
domain linking information. For example, r(A) not only denotes
links between entities in domain (A), but also links between
entities of domain (A) and domain (B), and entities of domain
(A) and domain (C).

Embedding chiasma. Embedding chiasma enable interaction
of information between diverse domains. The embedding chias-
ma process is shown in Figure 4. In fact, only two domains are
involved in one chiasma. Specifically, there is no chiasma among
domain (A), domain (B) and domain (C) at the same time, i.e.,
[h(A), r(B), t(C)] is a non-existent chiasma. Therefore, we pro-
pose binding rules to constrain the chiasma between multiple
domains. The binding rules include relation-tail entity binding
and head entity-relation binding. The chiasmas generated by
the binding rules are shown in the bottom part of Figure 4.

In the same domain, the chiasmas generated by the two rules
are consistent, e.g. [h(A), r(A), t(A)]. In the embedding process,
we use a chiasma as an information embedding in the same
domain. In different domains, the chiasmas generated by the
two rules are inconsistent. In the embedding process, we use
the sum of two chiasmas as the information embedding in the
hetero-domain. Specifically, in cross-domain embedding, r(B)

denotes the link between domain (B) and domain (C), and also
the link between domain (B) and domain (A); Similarly, r(A)

indicates the link between domain (A) and domain (B), and
the link between domain (A) and domain (C). When domain
(A) interacts with domain (B), r(B) is combined with r(A) to
show the association between domain (A) and domain (B), e.g.
[h(A), r(B), t(B)] and [h(A), r(A), t(B)]. This embedding chiasma
process is similar to chromosome chiasma in the medical field,
so we call it cross-domain chiasmal embedding. More, in the
whole embedding chiasma process, there are k chiasmas in the
same domain and 2k(k − 1) chiasmas in various domains, and
the total number of chiasmas is 2k2 − k. As shown in Figure 4,
when k = 3, the total number of chiasmas is 15.

Given the number of domains k, the number of segment-
ed embedding chiasma in Figure 4 is calculated as shown
below. For the number of homo-domain chiasmas, under the
relation-tail entity binding rule, the head entity (h(A)) interacts
only with the relation-tail entity pair (r(A)-t(A)) in the same
domain, with a number of chiasmas of k. Under the header
entity-relational binding rule, we drop these chiasmas since the
segmented embedding chiasmas are the same as the previous
ones. In summary, the number of same-domain chiasmas is k.
For the number of hetero-domain chiasmas, under the relation-
tail entity binding rule, for k domains, ∀ head entity (h(x))
interacts only with the relation-tail entity pair (r(¬x)-t(¬x)) of
the hetero-domain, with a number of chiasmas of k(k − 1) .
Similarly, segmented embeddings also interact k(k − 1) times
under the head entity-relational binding rule. In summary, the
number of hetero-domain chiasmas is 2k(k − 1). (x) denotes
the x-domain, and ¬(x) denotes a domain except for the x-
domain. Overall, the number of segmented embedding chias-
mas is k + 2k(k − 1) = 2k2 − k.

4.3 Convolution of embedding
ConvKB is a knowledge graph embedding method applying
convolutional neural networks [21]. In this method, each knowl-
edge triple < h, r, t > is represented as a matrix of dimension
d × 3, where each column vector denotes an element of the
knowledge triple. Then, this matrix is convolved by multiple
filters to generate different feature maps. Finally, these feature
maps are concatenated into a single feature vector that repre-
sents the knowledge triple, and the feature vector is multiplied
by the weight vector via dot product to return a score. This score
is used to predict the validity of the knowledge triple< h, r, t >.
Formally, the score function of ConvKB is defined as [21]:

fConvKB(h, r, t) = concat(g([h, r, t] ∗ Ω)) ·w, (2)

where Ω and w indicate the set of filters and the weight vector,
respectively. ∗ denotes the convolution operation and concat(•)
denotes the concatenation operation. g(•) is the activation func-
tion.

Inspired by ConvKB [21], this paper extracts and fuses the
homogeneous and heterogeneous information by convolving
the homo-domain embedding and hetero-domain embedding
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Fig. 4. Binding rules and segmented embedding chiasma.

with τ convolution kernels. The network structure is shown
in the right part of Fig. 2. First, for each knowledge triple
< h, r, t >, a vector matrix of dimension (2k2 − k) × d is
generated by cross-domain interaction operations. This vector
matrix is then fed to a convolutional layer with τ convolutional
kernels of size 1 × d. By repeatedly convolving each row of
the vector matrix, different feature maps are generated. Finally,
these feature maps are concatenated into a single feature vector
and combined with the weight vector w to compute the score of
the knowledge triple < h, r, t > by the dot product operation.
Formally, the score function of CDKG-CE is defined as:

fCDKG−CE(h, r, t) =

concat(g(

concat([h(x), r(y), t(z)]
homo, [h(x), r(y), t(z)]

hetero) ∗ Ω

)) ·w,{
[h(x), r(y), t(z)]homo, x = y = z;
[h(x), r(y), t(z)]hetero, x 6= y = z or x = y 6= z,

(3)
where x, y, z ∈ {A,B,C}. [h(x), r(y), t(z)]homo and
[h(x), r(y), t(z)]hetero denote homo-domain embedding and
hetero-domain embedding, respectively, as shown in the middle
part of Figure 2.

Certainly, the proposed CDKG-CE method can also be uti-
lized for embedding of generic knowledge graphs. When the
input is a generic knowledge graph, CDKG-CE can be viewed
as an extension of ConvKB [21] and SEEK-1 1. For ConvKB,

1. There are four score functions proposed in the paper [43], and we use
SEEK-1 to denote the first score function.

CDKG-CE segments and interacts the embedding. Each segment
represents a semantic meaning of the entity, e.g., the segmented
embedding of the entity ”apple” can represent multiple se-
mantics, i.e., apple company, fruit, and movie name, etc. For
SEEK-1, CDKG-CE uses τ convolutional kernels for feature
extraction instead of simple dot-product for the interactions of
the segmented embedding.

4.4 Loss function

Without loss of generality, we train the proposed CDKG-CE
method using the set of valid triples CDKG and the set of
invalid triples CDKG

′
as input, which is a general learning

method for knowledge graph embedding.
Generation of invalid triples. For each valid triple <

h, r, t >∈ CDKG, randomly replace the head entity h or the tail
entity t with other entity to obtain the invalid triple < h′, r, t >
or < h, r, t′ >, where h′ and t′ are other entities that replace the
head entity h and the tail entity t, respectively. Formally, the set
of invalid triples is represented as

CDKG′ =

{< h′, r, t > |h′, t ∈ E, r ∈ R}
∪
{< h, r, t′ > |h, t′ ∈ E, r ∈ R}.

(4)

For simplicity, < h′, r, t′ > is used to denote the invalid triple,
including < h′, r, t > and < h, r, t′ >.

Loss function. During the training process, the loss function
L and the regularization term on the weight vector w are
minimized. Formally, the loss function is

L =
∑

<h,r,t>∈CDKG

∑
<h′,r,t′>∈CDKG′

log(exp(fCDKG−CE(h, r, t)− fCDKG−CE(h′, r, t′)) + γ)

+ λ‖w‖F2 ,
(5)

where γ > 0 is a hyperparameter which serves as a boundary
between a valid triplet and an invalid triplet. λ‖w‖F2 is the
regularization term on the weight vector w.

5 MULTI-DOMAIN I2I RECOMMENDATION

Link prediction is a downstream application of knowledge
graph embedding. Based on link prediction, we design a nov-
el recommendation method. The method can be used as a
multi-domain I2I recommendation method based on knowledge
graphs. In this section, we present link prediction and the
designed novel multi-source I2I recommendation method.

5.1 Link prediction

Link prediction is generally the task of predicting another entity
that has a specific relationship with a given entity, i.e., predicting
t by given < h, r, ? > and predicting h by given <?, r, t >
[44]. In matter of fact, a triple < h, r, t > in the knowledge
graph describes a fact in the real world. In the link prediction,
if ∃ h∗ ∈ E (or ∃ t∗ ∈ E) such that the newly composed triple
< h∗, r, t > (or < h, r, t∗ >) has a score fCDKG−CE(h∗, r, t)
(or fCDKG−CE(h, r, t∗)) higher than fCDKG−CE(h, r, t), which
means that < h∗, r, t > (or < h, r, t∗ >) is also a fact in the real
world.
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5.2 Recommendation based on link prediction
In multi-domain I2I recommendation, given a seed item Iu ∈
E, explore that whether ∃ r ∈ R and ∃ I∗ ∈ Itarget
makes the newly composed triple < Iu, r, I

∗ > have a score
fCDKG−CE(Iu, r, I

∗) higher than fCDKG−CE(Iu, r, e). Where
< Iu, r, e >∈ CDKG is a real existing triple, and e ∈ E. If it
holds, the term I∗ can be treated as the recommended term for
the seed item Iu.

The algorithm 1 demonstrates a multi-domain I2I recom-
mendation algorithm based on link prediction. The input of the
algorithm 1 consists of the seed items Iu ∈ E, the set of target
items to be recommended Itarget ⊂ E, and the CDKG after
embedding through the CDKG-CE method. The output is the
set of the top m items with the highest score, i.e., I = {Ii}top@m.
Step 1, the set of recommended items is initialized to be empty.
Step 2, if ∃ < Iu, r, e >∈ CDKG, the entity-relation pair
< Iu, r > will be fetched to be used as the object of link
prediction. Since there exist multiple relations r forming entity-
relation pairs with Iu, we denote the set of entity-relation pairs
of the seed item Iu ∈ E by {< Iu, r >}. {< r, Iu >} is
obtained by the same way. In steps 3-8, item recommendation
is performed with Iu as the head entity. First, calculate the score
fCDKG−CE(Iu, r, e) of the triple < Iu, r, e > with Iu as the head
entity and r as the relation in CDKG, and obtain the highest
score max<Iu,r>. Then, the score fCDKG−CE(Iu, r, I

∗) of the
triple < Iu, r > with each element I∗ in Itarget is calculated,
and the term I∗ with a score higher than max<Iu,r> is put into
the recommended set of items I . Steps 9-14, Iu is used as the tail
entity for item recommendation. The detailed steps are similar
to steps 3-8. Steps 15-16, elements in I are sorted by score in
descending order, and extract the set I = {Ii}top@m of the top
m items with the highest score if the number of elements in I
is greater than m. Step 17, return the set of recommended items
I = {Ii}top@m.

The link prediction-based recommendation approach is d-
ifferent from both classical I2I recommendation and knowl-
edge graph-based recommendation approaches. The classical
I2I recommendation approach performs recommendation by
calculating the similarity between items, such as local I2I rec-
ommendation [1] and hybrid I2I recommendation [45]. The
knowledge graph-based recommendation approaches calculate
the inner product between the user vector and the item vector as
the probability of recommendation after the knowledge graph
embedding, such as the knowledge graph attention network-
based recommendation [46] and the collaborative knowledge
base embedding-based recommendation [47]. And the link
prediction-based recommendation method designed in this pa-
per draws on the application of link prediction in knowledge
graphs to make recommendations. The predicted triples rep-
resent an objective fact in the real world, and thus there is a
certain rationality of the link prediction-based recommendation
approach.

6 EXPERIMENTS

In this section, to validate the effectiveness of the proposed
CDKG-CE method and the multi-domain I2I recommendation
algorithm, we compare with some benchmark methods on two
knowledge graph datasets. All experiments are carried out with
Python 3.5 and torch 0.4.1 on a PC server configured with In-
tel(R) Core(TM) i7-8700 CPU 3.20GHz, 4 GPUs of 12G NVIDIA
Tesla K80C, and 128GB of RAM.

Algorithm 1: Multi-domain I2I recommendation algorithm
(MD-I2IR)

Input: Seed item Iu, the set of target items to be
recommended Itarget, the embedded CDKG

Output: The set of recommended items I = {Ii}top@m
1 I ← ∅
2 Get {< Iu, r >} and {< r, Iu >} in CDKG
3 for each < Iu, r > do
4 Compute the score fCDKG−CE(Iu, r, e) of the triple

< Iu, r, e > with Iu as the head entity and r as the
relation in CDKG

5 Get the highest score max<Iu,r> of the fact triple
according to fCDKG−CE(Iu, r, e)

6 Compute the score fCDKG−CE(Iu, r, I
∗) of the triple

< Iu, r, I
∗ > formed by < Iu, r > with each element

I∗ in Itarget
7 I ← I∗ if fCDKG−CE(Iu, r, I

∗) > max<Iu,r>
8 end
9 for each < r, Iu > do

10 Compute the score fCDKG−CE(e, r, Iu) of the triple
< e, r, Iu > with r as the relation and Iu as the tail
entity in CDKG

11 Get the highest score max<r,Iu> of the fact triple
according to fCDKG−CE(e, r, Iu)

12 Calculate the score fCDKG−CE(I∗, r, Iu) of the triple
< I∗, r, Iu > formed by < r, Iu > with each element
I∗ in Itarget

13 I ← I∗ if fCDKG−CE(I∗, r, Iu) > max<r,Iu>
14 end
15 Sort the elements in I by score in descending order
16 Extract the set I = {Ii}top@m of the top m items with the

highest score if the number of elements in I is greater
than m

17 return I = {Ii}top@m.

6.1 Datasets
Two knowledge graph datasets are adopted to evaluate our
proposed CDKG-CE method and multi-domain I2I recommen-
dation algorithm. The details of the two datasets are shown in
Table 1. FB15K-237 is a subset of FB15k and is introduced by

TABLE 1
Statistics of the experimental datasets. #Triples, |E| and |R| denote the

number of triples, entities and relations, respectively.

Dataset #Triples |E| |R|

FB15K-237 [48] 310,116 14,541 237
KG3Domain 78,032 9,282 445
KG3Domain-1 25,450 3,557 177
KG3Domain-2 30,072 5,300 262
KG3Domain-3 22,510 3,127 140

Toutanova et al. [48]. Relative to FB15k, the inverse relations of
FB15K-237 are removed. There are a total of 310,116 knowledge
triples, 14,541 entities and 237 relations in FB15K-237.

KG3Domain is a knowledge graph containing information
of three domains, which is obtained by the Knowledge Base
Cloud Service Platform API 2. First, we manually give the seed

2. http://kw.fudan.edu.cn/, the Knowledge Works platform provides
large-scale, high-quality knowledge graphs that can meet the needs of
machine language understanding [49].
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entities (called mentions) of multiple identified domains. Then,
the ’mention2entity’ API is applied to search the set of entities
associated with each seed entity. Then, the knowledge triples
related to the entities are collected utilizing the ’entity2triple’
API. Finally, the knowledge triples of each domain are cleaned.
KG3Domain includes 78,032 triples, 9,282 entities and 445 rela-
tions. And KG3Domain consists of three sub-knowledge graphs
of diverse domains, i. e., KG3Domain-1, KG3Domain-2 and
KG3Domain-3. The total number of entities in the three sub-
knowledge graphs is 11,984, while the number of entities in
KG3Domain is 9,282, which indicates that some entities exist
in multiple domains at the same time. Similarly, relations exist
in multiple domains simultaneously.

6.2 Evaluation mechanism

To evaluate the proposed CDKG-CE method and the novel
multi-domain I2I recommendation method, we apply two evalu-
ation mechanisms, link prediction and recommendation quality
assessment, as shown in Table 2.

TABLE 2
Evaluation mechanism.

Evaluation
mechanism Target Dataset Evaluation

metric

Link prediction

Evaluating the
performance of
knowledge graph
embedding method.

FB15K-237,
KG3Domain

MR,
MRR,

hits@10

Recommendation
quality

assessment

Evaluating the
performance of the
recommended method.

KG3Domain HR@10,
NDCG@10

Link prediction. Link prediction is a classical and effective
method for evaluating the performance of knowledge graph
embedding. We perform link prediction on FB15K-237 and
KG3Domain. Specifically, the head or tail entity in a triple is
randomly replaced with other entity. The score of the triple
is then calculated by fCDKG−CE and ranked in ascending
order. We evaluate the performance of the knowledge graph
embedding method by calculating the mean ranking (MR), mean
reciprocal ranking (MRR) as well as the proportion of its ranking
in the top 10 (hits@10) of the correct entity. Lower MR, higher
MRR and hits@10 indicate better performance of the knowledge
graph embedding method.

Recommendation quality assessment. Without loss of gen-
erality, we evaluate the performance of the recommendation
method on the KG3Domain dataset using the evaluation metric
hit rate (HR@10) and the normalized discounted cumulative
gain (NDCG@10) for the top 10. Given a seed item Iu and a
recommended item I∗, we follow the evaluation strategy [45],
[50] by mixing the real item I∗ and 100 randomly sampled
items from Itarget, sorting the real item and the 100 items and
measuring HR@10 and NDCG@10. The higher the HR@10
and NDCG@10, the better the performance of the recom-
mended method. It is worth noting that although HR@10 and
hits@10 are computed similarly, they aim at different targets.
The NDCG@10 takes into account not only the relevance of
the recommended item to the seed item, but also the effect of
ranking position.

6.3 Baselines

In link prediction, we compare the proposed CDKG-CE method
with representatives of two categories of knowledge graph em-
bedding methods: distance-based methods and deep learning-
based methods.

TransE [17]. TransE is the most representative distance-based
method. Its score function is ‖h + r− t‖1/2.

SEEK-1 [43]. SEEK-1 calculates the multi-linear dot product
of the head entity vector, the relation vector and the tail entity
vector. Its score function is

∑
(i) h(i) · r(i) · t(i), where h(i) refers

to the ith vector segment after vector cutting, and · stands for
dot product operation.

ConvE [20]. ConvE is a knowledge graph embedding
method based on 2D convolutional neural network. It has a
score function of f(vec(f([h; r] ∗ Ω))w)t, where f is a nonlinear
function and vec is used to vectorize the tensor.

ConvKB [21]. ConvKB explores the global relationships be-
tween entity embedding and relations embedding with the same
dimension by convolutional neural network. Its score function
is shown in Equation 2.

In the recommendation quality assessment, we compare the
proposed multi-domain I2I recommendation method (MD-I2IR)
with representatives of multi-class recommendation methods.

NeuMF [50]. NeuMF is a collaborative filtering method
based on neural network and matrix decomposition. It is used
to represent a collaborative filtering based recommendation
method.

SPE [45]. SPE is a tightly coupled hybrid semi-parametric
embedding framework. It is used to represent both hybrid
methods and I2I recommended methods. We initialize the terms
with TransE and use the initialization vector of the terms as the
meta-information vector of the terms.

Content+topology KNN.Content KNN is a classical I2I
recommendation method. It evaluates the relationship be-
tween a pair of items by analyzing their contents.
We extend Content KNN to Content+topology KNN. Con-
tent+topology KNN considers both content information and the
topology of two items in the knowledge graph, i.e. cos(Iu,Ii)

µ ,
where cos(Iu, Ii) is the cosine similarity between Iu and Ii, and
µ indicates that Ii is a µ-order neighbour of Iu.

DeepICF [3].DeepICF is an item-based collaborative recom-
mendation employing deep neural network. In this paper, the
seed entity Iu is considered as the user and the neighbors within
the 2 order (µ ≤ 2) of Iu as its interactive items, and a multi-
hot representation is used. Each item in Itarget is represented by
one-hot.

MD-I2IR(ip). MD-I2IR(ip) performs recommendation after
the knowledge graph embedding by computing the inner prod-
uct between the item vectors, which is a common method for
knowledge graph-based recommendation. It is used to represent
the knowledge graph based recommendation method.

6.4 Hyperparameter

TransE is utilized to initialize the knowledge triples, and its
hyperparameters are shown below. The learning rate is 0.01, the
optimizer is stochastic gradient descent (SGD), the number of
training rounds is 3000, and the dimension d of the embedding
is 60. The hyperparameters of the proposed CDKG-CE method
are shown below. The learning rate is 0.0005, the number of
convolutional kernels τ is 256, the optimizer is adaptive gradient
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algorithm (Adagrad), the number of training rounds is 300, and
the dimensionality of the embedding d is 60. The hyperparam-
eters of the baselines used for comparison are set according to
the corresponding papers.

6.5 Performance evaluation of knowledge graph embed-
ding

The performance of the proposed CDKG-CE method is evaluat-
ed by comparing it with some baseline methods for knowledge
graph embedding. The results of link prediction are shown in Ta-
ble 3. First, the performance of CDKG-CE is higher than TransE
on both two datasets, as evidenced by the fact that CDKG-CE
has lower MR, higher MRR and Hits@10. This demonstrates
that the deep features extracted using the neural network are
effective. Secondly, the performance of SEEK-1 is the lowest on
two datasets, which shows that the embedding capability of the
method for the knowledge graph is still insufficient. For the
deep learning-based method, the performance of CDKG-CE is
improved relative to both ConvE and ConvKB in evaluating
the metrics MRR and Hits@10. For the metric MR, CDKG-
CE’s MR value is slightly higher than ConvE and ConvKB on
dataset FB15K-237, and slightly higher than ConvE and slightly
lower than ConvKB on dataset KG3Domain. Nevertheless, their
performance on the metric MR is similar.

TABLE 3
Link prediction results and performance comparison of different methods.

The • indicates that the experimental results are from the paper [21],
because the actual experimental results are slightly lower than those in the

paper [21].

KGE methods FB15K-237 [48] KG3Domain
MR MRR Hits@10 MR MRR Hits@10

TransE [17]• 347 0.294 0.465 216 0.146 0.332

SEEK-1 [43] 408 0.283 0.451 260 0.139 0.320

ConvE [20]• 246 0.316 0.491 149 0.156 0.351

ConvKB [21]• 257 0.396 0.517 159 0.196 0.378

CDKG-CE 264 0.464 0.523 152 0.206 0.431

6.6 Performance evaluation of I2I recommendation

On the dataset KG3Domain, we validate the performance of the
proposed MD-I2IR by comparing the experimental results of
multiple I2I recommended methods. The detailed experimental
results are shown in Table 4. First, MD-I2IR has better perfor-
mance on both metrics HR@10 and NDCG@10 relative to
NeuMF, SPE, Content+topology KNN and DeepICF methods.
And the performance of MD-I2IR(ip) is slightly better than that
of SPE. This implies that the knowledge graph-based approach
is more suitable to be applied to I2I recommendation. The possi-
ble reason is that the knowledge graph embedding approach
provides a good representation of the information of items
and the relationship between them, which makes it easier to
identify items with similar features. Second, MD-I2IR performs
better than MD-I2IR(ip). This demonstrates the effectiveness of
the link prediction-based recommendation method. The items
recommended by this method are more like a fact with the seed
items on a certain relation r.

TABLE 4
I2I recommended results and performance comparison of different methods.

I2I recommendation methods HR@10 NDCG@10

NeuMF [50] 0.3681 0.1416

SPE [45] 0.5654 0.3336

Content+topology KNN 0.3471 0.2085

DeepICF [3] 0.3791 0.2567

MD-I2IR(ip) 0.5796 0.3388

MD-I2IR 0.6038 0.3583

6.7 Comparison of the distribution of the recommended
items in different domains

In order to verify the performance of the recommendation
algorithm to be able to recommend items in various domains, we
analyze and discuss the distribution of the recommended items
in different domains. Specifically, for the m items recommended
by the recommendation algorithm, i.e., HR@10, we analyze the
proportion of these m items in each of the three domains. We
evaluate the proportion of the three domains using the standard
deviation, which is most frequently used as a measure of the
degree of statistical dispersion. Formally,

σ =

√√√√1

k

k∑
i=1

(xi − x)2, (6)

where σ is the standard deviation of the distribution of the
recommended items in various domains. xi denotes the number
of recommended items in the ith domain, and x stands for
the average number of recommended items in each domain.
In particular, the smaller the σ, the stronger the ability of the
recommendation algorithm to recommend items from multiple
domains.

Figure 5 shows the distribution and standard deviation of the
items recommended by multiple recommendation algorithms
in different domains. From the Figure 5, we can notice that
when the number of recommendations is m = 10, the items
recommended by NeuMF, SPE, Content+topology KNN, Deep-
ICF and MD-I2IR(ip) methods come from the same domain,
while the items recommended by the proposed MD-I2IR come
from domain (A) and domain (C). When the number of rec-
ommendations is m = 20, SPE, Content+topology KNN and
DeepICF recommends items from the same domain, NeuMF
and MD-I2IR(ip) recommend items from domains (A) as well
as domain (C), and MD-I2IR recommends items from three
domains. When the number of recommendations is m = 30, the
items recommended by the Content+topology KNN method
come from two domains, while the items recommended by
the other five recommendation methods all come from three
domains. And NeuMF, SPE and DeepICF have relatively few
items from domain (B) and domain (C). When the number of
recommendations is m = 40, the items recommended by MD-
I2IR are more evenly distributed in each domain compared to
the other recommendation methods. When m > 40, the items
ranked greater than 40 are unsuitable to be recommended to
users considering the low score. As the number of items rec-
ommended increases, the standard deviation of the distribution
of the items recommended by the proposed MD-I2IR in various
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HR@10 HR@20 HR@30 HR@40

NeuMF
σ = 4.714 σ = 8.730 σ = 12.027 σ = 13.960

SPE
σ = 4.714 σ = 9.428 σ = 10.677 σ = 11.813

Content+

topology_KNN σ = 4.714 σ = 9.428 σ = 13.441 σ = 16.048

DeepICF
σ = 4.714 σ = 9.428 σ = 12.027 σ = 13.912

MD-I2IR(ip)
σ = 4.714 σ = 8.005 σ = 9.201 σ = 7.586

MD-I2IR
σ = 3.399 σ = 5.436 σ = 5.887 σ = 4.496

Domain (A) Domain (B) Domain (C)

Fig. 5. The distribution and standard deviation of items recommended by different recommendation algorithms in diverse domains.

domains is the lowest, which demonstrates the good ability of
the method to recommend items from multiple domains.

Figure 6 illustrates the distribution and standard deviation of
the items recommended in different domains by MD-I2IR based
on multiple knowledge graph embedding methods. From the
Figure 6, we can see that MD-I2IR(TransE) and MD-I2IR(SEEK-
1) can recommend items from all three domains at the same time
only if the number of recommendations reaches 40. This indi-
cates that these methods have difficulty in capturing the connec-
tion between different domains in embedding. MD-I2IR(ConvE)
and MD-I2IR(ConvKB) are able to recommend items from all
three domains when the number of recommendations is 30
and 40. This demonstrates that the deep learning-based method
has some ability to capture the connection between different
domains. The proposed MD-I2IR (CDKG-CE) considers both
same-domain embedding and cross-domain embedding, and
it has better performance in multi-domain recommendation.
To a certain extent, this indicated the good ability of CDKG-
CE to embed cross-domain knowledge graphs. As the number
of recommendations increases, the standard deviation of the
distribution of the items recommended by MD-I2IR (CDKG-
CE) across domains is the lowest, which also demonstrates that
the method has good ability to recommend items from multiple
domains.

Further, we analyze the tendency of the standard devia-
tion of the distribution with the growth of the number of
recommended terms, as shown in Figure 7. In Figure 7(a), the
standard deviations of the distribution of NeuMF, SPE, Con-
tent+topology KNN and DeepICF increase with the increase of
the number of recommended terms m, which indicates that the
distribution of their recommended terms in different domains
becomes more and more unbalanced. The standard deviations of
the distribution of MD-I2IR(ip) and MD-I2IR increase and then
decrease with the increase of the number of recommended terms
m, which reflects that the distribution of their recommended
terms in different domains can remain stable. In Figure 7(b), the
standard deviations of the distribution of MD-I2IR(TransE), MD-
I2IR(SEEK-1) and MD-I2IR(ConvE) increase with the increase
of the number of recommendations m, which shows that the

distribution of the recommended terms in different domains is
relatively unstable. In the case that the number of recommen-
dations exceeds 20, MD-I2IR (ConvKB) can keep the standard
deviation of the recommended distribution in a stable state.
Compared with other methods, the proposed MD-I2IR(CDKG-
CE) has a lower distribution standard deviation as the number
of recommendations m increases, and can maintain the stability
of the distribution standard deviation.

7 CONCLUSION

In this paper, we proposed a cross-domain knowledge graph
chiasmal embedding approach to effectively associate and inter-
act items in multiple domains. In the interaction between mul-
tiple domains, a binding rule was put forward to help achieve
both homo-domain embedding and hetero-domain embedding.
Then, a multi-domain I2I recommendation algorithm was pre-
sented to recommend items from multiple domains simultane-
ously, which is a method based on link prediction of knowledge
graph. Finally, experiments were conducted on two datasets to
validate the proposed approaches for their knowledge graph
embedding and cross-domain recommendation capabilities.

In the future, we can improve the research in the following
aspects. First, users’ information or historical interactions can
be joined to study personalized multi-domain recommenda-
tion, which can highly enhance users’ personalized experience.
Second, connectionless cross-domain knowledge graphs are ex-
plored to make multi-domain recommendation to users, such as
the movie domain and the clothes domain. Third, information
from one domain is transferred to another domain to enable
recommendation of items from another.
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