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ABSTRACT
Huge spatio-temporal data (e.g., traffic flow, human mobility, and
geographical data) are generated in modern cities. Accurately fore-
casting over spatio-temporal data enables many essential applica-
tions in intelligent cities, such as traffic management, public safety,
and economy. To improve the ease of use, we propose an Enhanced
Automated machine learning library for Spatio-Temporal forecast-
ing, entitled EAST. In EAST, we mainly reconstruct three types
of automated machine learning methods, namely, AutoSTPoint,
AutoSTGrid, and AutoSTGraph for spatio-temporal point (STPoint)
forecasting, spatio-temporal grid (STGrid) forecasting, and spatio-
temporal graph(STGraph) forecasting, respectively.We adapt structure-
aware algorithms using neural architecture search methods. The
search space is elaborately designed according to the structures
and characteristics of spatio-temporal data. We implement EAST
with the popular deep learning frameworks. Finally, we conduct ex-
periments on real-world datasets to demonstrate the effectiveness
and superiority of our EAST.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Informa-
tion systems→ Spatial-temporal systems.
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1 INTRODUCTION
Spatio-temporal data has been widely studied in academia and
industry for its difficulties in capturing spatial and temporal de-
pendencies. Accurately forecasting spatio-temporal data would
benefit both managers and residents in the city. Researchers have
proposed many deep neural network models to deal with spatio-
temporal forecasting in rich real-world scenarios over the past
few years [5, 10, 14]. However, spatio-temporal dependencies are
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always diverse from different tasks, leading to different neural net-
work structures. Designing neural networks for spatio-temporal
forecasting always requires huge human efforts, which may limit
the development of real-world applications. Recently, automated
machine learning approaches [1] have attracted considerable at-
tention because of their tremendous potential for finding the best
neural architecture. AutoST[3] and AutoSTG[8] have taken a slight
step in the spatio-temporal data modeling. However, a significant
gap remains between real-world applications and the easy way to
design and deploy a model. A unified and practicable framework is
eager to alleviate those problems.

To build a unified automated machine learning framework for
spatio-temporal data, we divide spatio-temporal data into three
main categories concerning the data structure. Then, neural archi-
tecture search (NAS) technologies are applied to find the optimal
neural networks for each task. Specifically, the search space is tai-
lored to adapt to different data structures. Our proposed framework
uses the gradient-based search algorithm to find the optimal net-
work. Further, we build the EAST based on the popular framework
PyTorch. Without loss of generality, EAST consists of three Au-
toML methods for devise spatio-temporal forecasting tasks, i.e.,
AutoSTPoint, AutoSTGrid, and AutoSTGraph.

Our contributions are three-fold: a) We propose a unified Au-
toML framework for ST forecasting, which classifies various ST
forecasting problems into three main categories: STPoint, STGrid,
and STGraph forecasting; b) We design the corresponding search
spaces for three ST forecasting tasks and implement EAST by in-
tegrating gradient-based network architecture search algorithms,
which can significantly reduce the human effort required for ST pre-
diction model development; c) Extensive experiments on real-world
datasets to show the effectiveness and superiority of our EAST.

2 FRAMEWORK
Traditionally, expert experience and human resources are indis-
pensable for designing excellent deep neural network architectures
for each task and dataset. NAS is a practical approach for reducing
the heavy experimental burden by automatically searching for the
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Figure 1: The framework of EAST. a) Data Preparation is used to transform raw ST data into STPoint, STGrid, STGraph datasets.
b) Neural Architecture Search(NAS) for ST Forecasting is used to find the optimal network architecture.

optimal architecture. Generally, NAS consists of two main com-
ponents, i.e., search algorithm and search space. Specifically, the
neural architecture is organized as a direct acyclic graph (DAG)
where the node indicates the data or features and the edge indicates
an operator. The search space consists of available operators, while
the search algorithm determines how to explore the search space to
find the optimal architecture. We design and implement EAST, an
Enhanced Automated machine learning library for Spatio-Temporal
data. The framework is illustrated in Figure 1.

EAST consists of two main modules, i.e., data preparation and
NAS for ST forecasting. The data preparation module is used to
standardize data. In detail, different types of raw spatio-temporal
data collected from IoT systems and mobile devices are divided
and formatted into three main structures: the point-structured
ST data (STPoint), grid-structured ST data (STGrid), and graph-
structured ST data (STGraph). The NAS module aims at finding
the optimal network architecture, consisting of four components:
candidate operators for ST data, search space, search strategy, and
evaluation strategy. We assembled three automated machine learn-
ing approaches: AutoSTPoint, AutoSTGrid, and AutoSTGraph for
STPoint, STGrid, and STGraph forecasting, respectively. One can
select the corresponding operators from the candidate operators,
and generate the search spaces for AutoSTPoint, AutoSTGrid, and
AutoSTGraph, respectively. These approaches employ the same
search strategy (e.g., gradient-based search algorithm) and evalua-
tion strategy to find the optimal network structure for a specific
spatio-temporal forecasting task from the search space.

3 METHODOLOGY
Without loss of generality, we focus on spatio-temporal forecasting
tasks. Formally, we give the problem definition as follows.

Problem Statement: Given historical observed region measure-
ments 𝑋1, 𝑋2, ..., 𝑋𝑖𝑛 , and optional external features 𝐸, we aim to
predict the future measurements 𝑌1, 𝑌2, ..., 𝑌𝑜𝑢𝑡 for all locations.

𝑋 can be instantiated as STPoint, STGrid, and STGraph datasets
according to real-world applications.

3.1 Search Space
Since devise data sources exist in various ST applications, it is non-
trivial to design one model for all applications. To build a unified
framework, we first group spatio-temporal data into three main
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Figure 2: Automated network capacity growing in AutoST-
Point

categories: STPoint, STGrid, and STGraph. Then, three different
structure-aware search spaces are delicately designed for the corre-
sponding categories.

3.1.1 AutoSTPoint for STPoint Forecasting. STPoint forecasting
tasks, e.g., air quality prediction, are widespread in the real world.
But sometimes, determining the number of layers in a neural net-
work and the number of neurons in each layer can be tricky. There-
fore, we try to use a neural architecture search algorithm to de-
termine these architecture parameters to reduce manual structure
adjustment costs.

The method to determine the number of network layers refers
to the strategy of AutoGrow[11], which grows from the minimal
network until the model’s performance on the validation set drops
to a certain threshold. Besides, the method to determine the number
of neurons in each layer is to find an appropriate subnetwork in a
super-network using the search strategy based on gradient.

3.1.2 AutoSTGrid for STGrid Forecasting. AutoSTGrid model can
adaptively adjust the network structure to capture spatial depen-
dencies (e.g., spatial distance) and temporal dependencies (i.e., close-
ness, periodicity, and trend) of specific STGrid data. AutoSTGrid
reduces the workload of manual adjustment, achieving the purpose
of rapid application.

Candidate Operators. The selection of candidate operators has a
critical effect on the performance of architecture search results. For
STGrid forecasting, convolution operation plays a significant role
in capturing the correlation of nearby and distant regions. There-
fore, we take the standard convolution and separable convolution
into consideration. Moreover, local correlations captured by low-
level convolution and global correlations captured by high-level
convolution are important to STGrid forecasting. Therefore, skip
connection, which fuses multi-level correlations, is also necessary.



EAST: An Enhanced Automated Machine Learning Library
for Spatio-Temporal Forecasting DeepSpatial ’22, August 15, 2022, Washington, DC, USA

OutputOutput

InputInput

Skip ConnectionSkip ConnectionMix OperationMix Operation

StdConv_3 StdConv_5 SepConv_3 SepConv_5StdConv_3 StdConv_5 SepConv_3 SepConv_5

Mix Operation

StdConv_3 StdConv_5 SepConv_3 SepConv_5 Identi ty None

Output

Input

Skip ConnectionMix Operation

StdConv_3 StdConv_5 SepConv_3 SepConv_5 Identi ty None

Figure 3: Search space of AutoSTGrid [3]
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Figure 4: Search space of AutoSTGraph[8]

Therefore, we decide to include six operators into the search
space of AutoSTGrid, i.e., convolution operations including 3 × 3
or 5 × 5 standard convolution, 3 × 3 or 5 × 5 separable convolution,
skip connection operations consisting of none operation (do not
connect) and identity operation (connect). Figure 3 shows the entire
search space.

3.1.3 AutoSTGraph for STGraph Forecasting. The STGraph is also
an important data structure to describe the ST data in real-world
applications. Many hand-crafted graph neural networks are pro-
posed to predict urban traffic, air quality, etc., accurately. However,
no model can handle all different prediction tasks due to differ-
ences in data types, fields, and distributions. Therefore, there is a
rising demand for neural architecture searching in predicting over
spatio-temporal graphs[8].

AutoSTGraph[8] adopts a cell-based search space (as Figure 4
shown). The cell employs spatial and temporal convolution to cap-
ture spatial and temporal correlations, and the pooling layer in
AutoSTGraph increases the temporal receptive fields. In particu-
lar, AutoSTGraph uses meta-learning techniques to model each
node and edge in the graph individually so that the final network
can flexibly use the common knowledge and unique knowledge

of nodes. AutoSTGraph finally concatenates the outputs of all the
cells and pooling layers and feeds them into a fully connected layer
to generate the final prediction.

3.2 Search Strategy & Evaluation Strategy
We employ a gradient-based search algorithm and a weight-sharing
model evaluation strategy. Specifically, since the candidate opera-
tors are in a discrete space, which can not be optimized through
backpropagation, the gradient-based search algorithm[7] makes
a relaxation to generate a continuous space. Assuming the set of
candidate operations is O which may consist of universal and grid-
structure operators, the relaxation operator over all candidate opera-
tors between two adjacent nodes is defined as

∑
𝑜∈O

𝑒𝑥𝑝 (𝛼𝑜 )∑
𝑜′∈O 𝑒𝑥𝑝 (𝛼𝑜′ )

𝑜 (𝑥),
where 𝛼 is the structure parameter that determine the weight of
each operator, 𝑥 in the output features of previous layer. To find the
best parameter, a bi-level optimization problem should be solved
over train and validation set as,

min𝛼 L𝑣𝑎𝑙 (𝑤∗ (𝛼), 𝛼)
𝑠 .𝑡 . 𝑤∗ (𝛼) = argmin𝑤 L𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝛼), (1)

where𝑤 and 𝛼 are the model parameters and architecture parame-
ters seperately. The above optimization problem can be effeciently
solved by an approximation[7].

4 EXPERIMENTS WITH EAST
4.1 Library Overview
We implement EASTwith PyTorch 1.8.21 and PyTorch-Lightning
1.5.62. PyTorch is one of the most popular deep learning frame-
works worldwide. PyTorch-Lightning provides a flexible interface
and powerful plugins for training and inference, greatly reduc-
ing the difficulty of implementing network architecture searching
algorithms.

The mainstream deep learning workflow usually includes data
processing, model implementation, and training. Therefore, we
design and implement three main modules in EAST, i.e., general
data interfaces for three types of ST data, the automatic search
space construction, and the network architecture search algorithm.

To adapt to different spatiotemporal prediction tasks and improve
the reusability of EAST, we design a set of spatio-temporal data sam-
ple specifications according to the characteristics of spatio-temporal
data and use it in the implementation of candidate operators and
the network architecture search algorithm:
• For STPoint forecating, we define the input sample as𝑋𝑝𝑜𝑖𝑛𝑡 ∈
R𝐶×𝑁×𝑇 , where 𝐶 is the number of input features, 𝑁 is the
number of locations to predict, and𝑇 is the number of input
timestamps.
• For STGrid forecasting, we take 𝑋𝑔𝑟𝑖𝑑 ∈ R𝐶×𝐻×𝑊 ×𝑇 as the
model input, where 𝐶 is the number of input features, 𝑇 is
the number of input timestamps, and 𝐻 ,𝑊 are the height
and width of the grid, respectively.
• For STGraph forecasting, we have dynamic temporal input
𝑋𝑔𝑟𝑎𝑝ℎ ∈ R𝐶×𝑁×𝑇 , static node features V ∈ R𝑁×𝐹𝑣 , and
static edge features A ∈ R𝑁×𝑁×𝐹𝐴 , where 𝑁 is the number

1https://pytorch.org/
2https://www.pytorchlightning.ai/
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Algorithm 1: Pseudocode of EAST’s workflow
Data: RawSTData, TargetDataCategory(i.e., point, grid, or

graph), SearchSpaceConfig
Result: OptimalModel
StandardSampleDataset← DataTransform(RawSTData,
TargetDataCategory);

/* EAST integrates data transformation
interfaces for common types of ST data, e.g.,
geo-sensory time series */

SearchSpace← GenerateSearchSpace(SearchSpaceConfig);
OptimalModel←
NetworkSearchAndTrain(StandardSampleDataset,
SearchSpace);

of locations to predict, 𝐶 is the dimension of dynamic input,
𝑇 is the number of input timestamps, 𝐹𝑣 and 𝐹𝐴 are the
dimension of node features and edge features, respectively.

In EAST, we have implemented several spatial operators (e.g., Conv,
SepConv, GraphConv) and temporal operators (e.g., TConv, TCN).
Moreover, we reproduce the search space described in [3, 8, 11],
and a search space construction mechanism is developed to facil-
itate users to adjust the search space and add custom operators.
Furthermore, we use PyTorch-Lightning to implement a gradient-
based network search algorithm, which makes the searching and
re-training process easier. Algorithm 1 shows the pseudocode of
EAST’s workflow.

4.2 Reproducibility
To verify the correctness of the reproduced models in EAST, we
conduct experiments on real-world datasets, including AirBJ[5],
TaxiBJ[14], TaxiGY[14], METR-LA[4], and PEMS-BAY[4]. Table
1 shows the experimental results. On STPoint forecasting, EAST
achieves higher accuracy than expert-designed networks. And for
the spatiotemporal grid prediction task, AutoST (EAST) adopts the
same search space setting as the original one in [3] and achieves
a comparable result, which shows the correctness of our repro-
duction. Moreover, AutoSTG (EAST) uses a reduced search space
for STGraph prediction tasks and achieves even higher prediction
accuracy on the two datasets.

5 CONCLUSION
In this paper, we propose a unified AutoML framework for spatio-
temporal forecasting. Without loss of generality, we implement
EAST with three spatio-temporal forecasting methods that cover
most of the spatio-temporal forecasting scenarios. EAST reduces
the human endeavor significantly. Experimental evaluations of
real-world applications have demonstrated its effectiveness. In the
future, we will explore automatic machine learning methods for the
new category of spatio-temporal tasks (mainly trajectory mining)
and multi-source heterogeneous data fusion.

3RMSE: Root Mean Square Error

Table 1: Performance comparisons among different models.

Task Dataset Model RMSE3

STPoint
Forecasting AirBJ

DeepAir[13] 22.21
EAST 22.15

STGrid
Forecasting

TaxiBJ

STResNet[14] 17.51
ST-3DNet[2] 17.82
DeepSTN[6] 15.98
AutoST[3] 15.88

AutoST(EAST) 15.99

TaxiGY

STResNet[14] 2.77
ST-3DNet[2] 2.24
DeepSTN[6] 2.15
AutoST[3] 2.15

AutoST(EAST) 2.17

STGraph
Forecasting

METR-LA

GWNet[12] 6.27
DCRNN[4] 6.16

ST-MetaNet[9] 6.16
AutoSTG[8] 6.10

AutoSTG(EAST) 6.08

PEMS-BAY

GWNet[12] 3.70
DCRNN[4] 3.66

ST-MetaNet[9] 3.72
AutoSTG[8] 3.57

AutoSTG(EAST) 3.55
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