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ABSTRACT
Spatio-temporal graphs are important structures to describe ur-

ban sensory data, e.g., traffic speed and air quality. Predicting over

spatio-temporal graphs enables many essential applications in in-

telligent cities, such as traffic management and environment analy-

sis. Recently, many deep learning models have been proposed for

spatio-temporal graph prediction and achieved significant results.

However, designing neural networks requires rich domain knowl-

edge and expert efforts. To this end, we study automated neural

architecture search for spatio-temporal graphs with the application

to urban traffic prediction, which meets two challenges: 1) how to

define search space for capturing complex spatio-temporal correla-

tions; and 2) how to learn network weight parameters related to

the corresponding attributed graph of a spatio-temporal graph.

To tackle these challenges, we propose a novel framework, en-

titled AutoSTG, for automated spatio-temporal graph prediction.

In our AutoSTG, spatial graph convolution and temporal convolu-

tion operations are adopted in our search space to capture complex

spatio-temporal correlations. Besides, we employ the meta learning

technique to learn the adjacency matrices of spatial graph con-

volution layers and kernels of temporal convolution layers from

the meta knowledge of the attributed graph. And specifically, such

meta knowledge is learned by a graph meta knowledge learner

that iteratively aggregates knowledge on the attributed graph. Fi-

nally, extensive experiments were conducted on two real-world

benchmark datasets to demonstrate that AutoSTG can find effective

network architectures and achieve state-of-the-art results. To the

best of our knowledge, we are the first to study neural architecture

search for spatio-temporal graphs.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Informa-
tion systems→ Spatial-temporal systems.
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1 INTRODUCTION
Recent advances of data acquisition technology help collect a vari-

ety of spatio-temporal (ST) data in urban areas, such as urban traffic,

air quality, and etc. Such data has complex spatial and temporal cor-

relations [25, 26], which can be depicted by spatio-temporal graphs

(STG), as shown in Figure 1(a). Hence, predicting STGs can enable

many mission-critical applications, such as traffic management and

environment analysis [30], which are essential to the development

of intelligent cities.
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Figure 1: Background of spatio-temporal graph prediction.

Recently, a growing number of ST neural networks have been

proposed for STG prediction, as our statistics of related papers

(published in the top data mining and AI conferences) show in

Figure 1(b). To capture the spatial and temporal correlations, many

representative models, such as [12, 13, 21, 23], are carefully assem-

bled from small network structures, which can be grouped into

temporal networks (e.g., convolution neural networks, recurrent

neural networks, and temporal attention networks) and spatial

networks (e.g., graph convolution networks and spatial attention

https://doi.org/10.1145/3442381.3449816
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networks). By leveraging the capability of modeling ST correlations,

these models can achieve significant performance.

However, these representative models are subjected to specific

data types or data distributions, and directly transferring these

networks to other tasks could reduce prediction accuracy. For ex-

ample, in traffic prediction, the data of different cities can show

heterogeneous spatial correlations. Some cities (e.g., Beijing and

Shanghai) meet severe traffic problems, where traffic jams are often

intensified and broadcast to a large area, showing long-distance

spatial correlations. Whereas in some other cities, there is much less

traffic congestion, which hardly impacts moving vehicles, showing

less significance of long-distance spatial correlations. Because of

such disparity, it is necessary to design neural networks for differ-

ent tasks, which requires substantial domain knowledge and large

amounts of expert efforts, making it time-consuming and costly

to popularize deep learning technology to a variety of important

applications. Therefore, there is a rising demand for an automated

neural architecture search (NAS) framework for STG prediction.

In the beginning, NAS frameworks were proposed for conven-

tional image recognition and sequence modeling [15, 18, 22]. There-

after, these techniques enabled other applications, such as modeling

graph data [5, 31] and predicting grid-based ST data [11]. However,

these existing methods cannot be directly adopted to model STGs,

because of the following two problems.

Problem 1: at the network architecture level, how to define the search
space for modeling STGs? The basic assumption of STGs is that the

readings of a node are conditioned on its historical readings, as

well as the readings of its neighborhoods [21]. The key problem

is to capture the spatial and temporal correlations in such a non-

Euclidean and irregular space. This means that the search space for

the conventional data types, including sequence data, grid-based

data, and graph data, cannot be directly adopted in STG prediction.

Problem 2: at the network parameter level, how to learn the weight
parameters related to the attributed graph of an STG? In general,

an STG is associated with an attributed graph, which impacts ST

correlations. Figure 2(a) presents a real-world traffic example in

METR-LA dataset [12], that speed sensors in a city form an attrib-

uted graph, where nodes and edges denote sensors and relations

between sensors, respectively. These nodes and edges have some ge-

ographical attributes, e.g., node locations and road distance between
nodes. The characteristics of this graph, i.e., the characteristics of
these nodes and edges, indicate the ability of the transportation

system, impacting how traffic broadcasts in the STG [16].

As network weight parameters represent to what extent the data

is correlated in an STG, it is crucial to capture the relationships

between network weight parameters and the characteristics of

the attributed graph. However, such characteristics are complex,

depending on both the attributes and graph structure:

• The characteristics of nodes and edges are related to their own

attributes. As the example shows in Figure 2(a), 𝑣0 is located at a

hub while 𝑣1 is an intermediate node on road network. Conse-

quently, as shown in Figure 2(b), 𝑣0 easily becomes congested,

while 𝑣1 is often unobstructed, showing diverse node charac-

teristics. Similarly, as edge ⟨𝑣0, 𝑣2⟩ is much shorter than edge

⟨𝑣0, 𝑣1⟩, node 𝑣0 has stronger impacts on 𝑣2 than 𝑣1 as depicted

(b) Traffic speed (mile/hour) (c) Edge correlations(a) Attributed graph
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Figure 2: Impacts of attributed graph on ST data.

in Figure 2(c), showing diverse edge characteristics. Therefore,

attributes can reflect the traffic-related characteristics.

• The characteristics of nodes and edges are related to the graph

structure. First, characteristics of a node are related to its neigh-

bors and edges. In Figure 2(a), 𝑣2 and 𝑣3 have very similar node

attributes (i.e., the density and structure of roads). However, as

edge ⟨𝑣0, 𝑣2⟩ is much shorter than ⟨𝑣0, 𝑣3⟩, 𝑣2 is more likely to

witness traffic congestion than 𝑣3, showing different node char-

acteristics. Likewise, the characteristics of an edge are related to

its two connecting nodes. In Figure 2(a), edge ⟨𝑣0, 𝑣2⟩ and ⟨𝑣3, 𝑣4⟩
have similar attributes (i.e., length and width). However, 𝑣0 and

𝑣2 are easily blocked by traffic, while 𝑣3 and 𝑣4 are of easier traf-

fic dispersion. Accordingly, in Figure 2(c), edge ⟨𝑣0, 𝑣2⟩ shows
much stronger correlations than ⟨𝑣3, 𝑣4⟩, indicating different edge
characteristics. Hence, it is essential to learning traffic-related

characteristics taking into consideration the graph structure.

To tackle all above problems, we propose a NAS framework, enti-

tled AutoSTG, for spatio-temporal graph prediction. Without loss of

generality, urban traffic prediction is employed as a concrete appli-

cation in our study. To capture ST correlations, our search space is

constructed from a candidate operation set, including spatial graph
convolution (SC), temporal convolution (TC), and other widely used

operations in NAS, i.e., zero and identity, as shown in Figure 3(a)

and (b). As ST correlations are related to attributed graph, we em-

ploy meta learning [16] to generate weight parameters of SC and

TC from node and edge meta knowledge (i.e., characteristics) of
attributed graph, as shown in Figure 3(a) and (c). Particularly, a

graph representation learning network is used to learn the meta

knowledge by aggregating neighbors’ information on attributed

graph, as shown in Figure 3(c). Our contributions are three-fold:

Spatial Graph Conv Temporal Conv

Zero Identity

(b) Candidate operation set

(a) Architectures

Historical Traffic

Future Traffic

Construct

architecture

Meta

learning

(c) Node and edge characteristics

Node

Characteristics

Edge

Characteristics

Graph representation 

learning 

Attributed

graph

Figure 3: Insights of our NAS framework.

• We proposed a novel framework, entitled AutoSTG, for auto-

mated spatio-temporal graph prediction. Specifically, spatial graph

convolution and temporal convolution operations are adopted
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in our AutoSTG to capture spatial and temporal correlations,

respectively. To the best of our knowledge, we are the first to

study NAS framework for modeling STGs.

• To capture the ST correlations related to node and edge character-

istics, meta learning technique is adopted to learn the adjacency

matrices of spatial graph convolution layers and kernels of tempo-

ral convolution layers from the meta knowledge of the attributed

graph. In particular, a graph meta knowledge learner, which is

composed of node learners and edge learners, iteratively aggre-

gates the neighbors’ information of attributed graph to learn

node and edge meta knowledge.

• We conduct extensive experiments on twowidely used real-world

benchmark datasets to verify our framework. The experimental

results demonstrate that our AutoSTG can find effective neural

architectures and achieve state-of-the-art prediction accuracy.

2 PRELIMINARIES
In this section, we first introduce the definitions and the problem

statement. Then we describe the graph convolution layer used in

our work. For brevity, frequently used notation is listed in Table 1.

Table 1: Frequently used notation.

Notation Description
𝑁𝑙 , 𝑁𝑡 Number of locations/timestamps.

𝑁in, 𝑁out Timestamps of historical/future traffic.

X𝑡 The traffic readings at timestamp 𝑡 .

V(𝑚) , E (𝑚) The node/edge representation at𝑚-th iteration.

A The adjacency matrices of graph convolution.

K The kernels of temporal convolution.

2.1 Definitions and Problem Statement
Definition 1. Attributed graph. An attributed graph is defined

asG =

{
V,E,V(0) , E (0)

}
, whereV =

{
𝑣1, · · · , 𝑣𝑁𝑙

}
denotes𝑁𝑙 nodes

(locations), E =
{
⟨𝑣𝑖 , 𝑣 𝑗 ⟩ | 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑙

}
denotes edges (relationships

between locations), V(0) ∈ R𝑁𝑙×𝐷 denotes 𝐷 dimensional attribute
values for nodes, and E (0) ∈ R𝑁𝑙×𝑁𝑙×𝐾 denotes 𝐾 dimensional at-
tribute values for edges, respectively. Note that if there is no edge
between node 𝑖 and 𝑗 (i.e., ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∉ E), its attribute values in E (0)
are set as zero. In addition, we use N𝑖 =

{
𝑗 | ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∈ E

}
to denote

the neighbors of node 𝑖 .

Definition 2. STG prediction. Given previous 𝑁in readings for
𝑁𝑙 nodes

[
X1, ...,X𝑁in

]
∈ R𝑁in×𝑁𝑙×𝐷 and the attributed graph G,

predict the next 𝑁out readings
[
Ŷ1, ..., Ŷ𝑁out

]
∈ R𝑁out×𝑁𝑙×𝐷 .

Problem 1. NAS for STG prediction. We aim to find a neural
architecture for STG prediction, which learns from training dataset
Dtrain and achieves the minimum loss on validation dataset D

val
:

min

Λ
L

(
Θ∗ (Λ) ,Λ,D

val

)
,

s.t. Θ∗ (Λ) = argmin

Θ
L (Θ,Λ,Dtrain) ,

(1)

where L, Θ, Λ denote loss function, network weight parameters, and
architecture parameters, respectively.

2.2 Graph Convolution
Graph convolution [10] is capable of learning nodes’ features given

graph structure. Recently, [12] proposed diffusion convolution for

modeling spatial correlations in traffic prediction. Thus, we employ

diffusion convolution as the implementation of graph convolution.

Formally, given node stateH ∈ R𝑁𝑙×𝐷
and 𝐾 adjacency matrices

A = [A1, · · · ,A𝐾 ] =
(
𝑎𝑘𝑖 𝑗

)
𝐾×𝑁𝑙×𝑁𝑙

as inputs, diffusion convolu-

tion outputs node state DC(H,A,W) ∈ R𝑁𝑙×𝐷′
, computed by:

DC (H,A,W) =
𝐾∑
𝑘=1

𝑃∑
𝑝=1

(A𝑘 )𝑝 HW𝑘𝑝 , (2)

where 𝑃 is a constant denoting the number of diffusion steps, (A𝑘 )𝑝

is the power series of diffusionmatrixA𝑘 , andW =

{
W𝑘𝑝 ∈ R𝐷×𝐷

′
}

is the set of weight matrices for feature learning, respectively.

In STG prediction, the adjacency matrices A can be constructed

from edge representationE =

(
𝑒𝑖 𝑗𝑘

)
𝑁𝑙×𝑁𝑙×𝐾

by functionDM (E) =(
𝑎𝑘𝑖 𝑗

)
𝐾×𝑁𝑙×𝑁𝑙

. As the adjacency matrices represent the diffusion

probability on the graph, we adopt softmax function to compute

each 𝑎𝑘𝑖 𝑗 by normalizing E:

𝑎𝑘𝑖 𝑗 =


exp(𝑒𝑖 𝑗𝑘 )∑

𝑗′∈N𝑖 exp(𝑒𝑖 𝑗′𝑘 )
, ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∈ E,

0 otherwise.
(3)

3 METHODOLOGIES
As shown in Figure 4, our framework consists of two parts: 1)

constructing architectures from our search space, as shown in Fig-

ure 4(a); and 2) employing meta learning technique to learn the

weights of SC and TC layers in the built architectures, as shown

in Figure 4(b). Specifically in Figure 4(b), the meta learning part

employs a graph meta knowledge learner to extract node and edge

meta knowledge from the attributed graph, and then uses SC-meta

learner and TC-meta learner to generate the adjacency matrices of

SC layers and kernels of TC layers from the extracted meta knowl-

edge, respectively, in the constructed architectures. In the following

subsections, we first introduce the search space for architecture

construction. Then we present the graph meta knowledge learner

and meta learners. Finally, we show the optimization algorithm.

3.1 Search Space for Architecture Construction
Inspired by the existing convolutional-based neural architectures

[21, 23] that have been proved to be effective in STG prediction, we

design a convolutional-based search space for our framework. As

shown in Figure 4(a), our prediction network is composed of a series

of cells and temporal pooling layers, where the cells are employed

for modeling ST correlations and the temporal pooling layers (e.g.,
average pooling in temporal domain) are adopted to increase the

temporal receptive fields of hidden states. All the outputs of cells

and pooling layers are aggregated by shortcut connections for mod-

eling multi-resolution ST correlations, and then a fully-connected

(FC) layer is adopted to predict the next 𝑁out-timestamp values.

Initially, these cells have undetermined architectures, and our goal

is to search the architecture for each of them.
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Figure 4: Framework Overview of AutoSTG.

Following DARTS framework [15], the search space of each cell is

a direct acyclic graph, consisting of𝑁𝑣 vertices. Each vertex denotes

a latent representation of the STG, i.e.,H 𝑖 ∈ R𝑇×𝑁𝑙×𝐷
, where 𝑇 is

the number of timestamps and𝐷 is the number of features (𝑇 and𝐷

are fixed in each cell). The cell input isH0
, while the output is the

sum of all intermediate representations

∑𝑁𝑣

𝑖=0
H 𝑖

. Each vertex pair

(𝑖, 𝑗) is associated with a candidate operation set O = {𝑜1, 𝑜2, · · · }
(i.e., a function set) that transformsH 𝑖

, weighted by architecture

parameters 𝜶 (𝑖, 𝑗) = {𝛼 (𝑖, 𝑗)𝑜 | 𝑜 ∈ O}. The representation of a vertex

can be computed based on all its predecessors:

H 𝑗 =
∑
𝑖< 𝑗

∑
𝑜∈O

exp

(
𝛼
(𝑖, 𝑗)
𝑜

)
∑
𝑜′∈O exp

(
𝛼
(𝑖, 𝑗)
𝑜′

) 𝑜 (H 𝑖
)
. (4)

For each pair (𝑖, 𝑗), the operation with the highest score 𝛼
(𝑖, 𝑗)
𝑜 in

𝜶 (𝑖, 𝑗) is selected as the operation in the final architecture.

To capture ST correlations, spatial graph convolution and tem-

poral convolution are included in our candidate operation set O:

• Spatial Graph Convolution. We use a diffusion convolution to

capture spatial correlations of STGs. Formally, suppose that the

input hidden state H = [H1, · · · ,H𝑇 ] ∈ R𝑇×𝑁𝑙×𝐷
, the input

adjacency matrices is denoted asA, and the learnable weights is

denoted asW. The spatial graph convolution function is defined

as SC (H ,A,W) = H ′ =
[
H′
1
, · · · ,H′

𝑇

]
∈ R𝑇×𝑁𝑙×𝐷

, which

employs diffusion convolution on each H𝑖 , expressed as:

H′𝑖 = DC (H𝑖 ,A,W) , (5)

where the computation of function DC(·) and the constraints of

the related parameters (e.g.,W) refer to Equation (2).

• Temporal Convolution. We employ a temporal convolution on

each node to capture temporal correlations of STGs. Suppose the

input hidden stateH ∈ R𝑇×𝑁𝑙×𝐷
is composed of

{
H1, · · · ,H𝑁𝑙

}
,

where each H𝑖 ∈ R𝑇×𝐷 denotes the hidden state of node 𝑖 . Then,

given the input convolution kernels K =
{
K1, · · · ,K𝑁𝑙

}
, the

temporal convolution function TC (H ,K) = H ′, where H ′ ∈
R𝑇×𝑁𝑙×𝐷

is composed of

{
H′
1
, · · · ,H′

𝑁𝑙
| H′

𝑖
∈ R𝑇×𝐷

}
. Then, the

output hidden state of node 𝑖 is computed by:

H′𝑖 = H𝑖 ★K𝑖 , (6)

where ★ denotes 1D convolution [9] for sequence modeling.

Besides, two widely used operations, i.e., zero and identity are also

included in our candidate operation set like [15], to enable multiple

branches and shortcut connections in network architectures.

3.2 Graph Meta Knowledge Learner
In STG prediction, the ST correlations of data are related to the

characteristics of attributed graph G. Therefore, it is essential to
learn the representations, namely the meta knowledge, of nodes and

edges fromG. Previously, [16] employed FC layers to learn node and

edge meta knowledge respectively from node and edge attributes.

However, such method ignores the impacts of graph structure. To

tackle this problem, we propose a graph meta knowledge learner,

which iteratively learns nodes’ and edges’ representations by ag-

gregating their neighbors’ information on G.
As shown in Figure 5, we apply𝑀 iterations to learn node and

edge representations by node learners and edge learners. Let V(𝑚)

and E (𝑚) denote the node and edge representations at𝑚-th itera-

tion, respectively. The inputs are node and edge attributes, denoted

as V(0) and E (0) , and the outputs are node and edge meta knowl-

edge, denoted as V(𝑀) and E (𝑀) . The details of node learners and
edge learners are as follow:

Node

Attributes

Node Learner 1

Edge Learner 1

...

...

Node Learner 2

Edge Learner 2

            

            

Node Meta 

Knowledge

Edge

Attributes

Edge Meta 

Knowledge

Figure 5: Structure of graph meta knowledge learner.

Node Learner. As characteristics of a node are related to its neigh-
bors and connecting edges, we employ graph convolution to learn

each node’s representation by aggregating its neighbors’ informa-

tion through its edges. At𝑚-th iteration, the node learner takes the

representations of the previous iteration, i.e., V(𝑚−1) ∈ R𝑁𝑙×𝐷
and

E (𝑚−1) ∈ R𝑁𝑙×𝑁𝑙×𝐾
as inputs, and then returns the higher-level

node representations V(𝑚) ∈ R𝑁𝑙×𝐷′
. Without loss of generality,

we employ diffusion convolution as a concrete example to show

the implementation of node learner.
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The first step is to compute adjacency matrices of graph convo-

lution. In our work, we use edge representations to generate the

adjacency matrices A by formula: A = DM

(
E (𝑚−1)

)
. The com-

putation of this function refers to Equation (3). Then the diffusion

convolution can be employed for V(𝑚−1) to get the higher-level

node representations by Equation (2), which can be expressed as:

V(𝑚) = ReLU

(
DC

(
V(𝑚−1) ,A,W(𝑚)

))
, (7)

whereW(𝑚) denotes the learnable parameters of this node learner,

and the constraint of W(𝑚) is illustrated in Section 2.2. In this

way, we can learn the representations of each node by aggregating

neighbors’ information through the connected edges. Therefore,

both the attributes and structure of attributed graph are considered

in learning node representations.

Edge Learner. For each edge, its characteristics are related to its

connected nodes. Thus, for each edge, we push the representations

of its two connected nodes to this edge, and then use an FC layer to

learn the higher-level edge representation. At𝑚-th iteration, given

node representations V(𝑚−1) =
[
𝒗 (𝑚−1)
1

, ..., 𝒗 (𝑚−1)
𝑁𝑙

]
∈ R𝑁𝑙×𝐷

and

edge representations E (𝑚−1) ∈ R𝑁𝑙×𝑁𝑙×𝐾
as inputs, edge learner

outputs E (𝑚) ∈ R𝑁𝑙×𝑁𝑙×𝐾 ′
to represent the higher-level edge rep-

resentations. Specifically, E (𝑚) is composed of the representation of

each edge, i.e., {𝒆 (𝑚)
𝑖 𝑗
∈ R𝐾 ′ | ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∈ E} (note that for ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∉ E,

𝒆 (𝑚)
𝑖 𝑗

is set as zero). Then the higher-level edge representation for

edge ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ is computed by:

𝒆 (𝑚)
𝑖 𝑗

= ReLU

(
W(𝑚)

(
𝒗 (𝑚−1)
𝑖

∥ 𝒗 (𝑚−1)
𝑗

∥ 𝒆 (𝑚−1)
𝑖 𝑗

)
+ 𝑏 (𝑚)

)
, (8)

where ∥ denotes vector concatenation, W(𝑚) ∈ R𝐾 ′×(2𝐷+𝐾) is the
weight matrix and 𝑏 (𝑚) ∈ R is the bias, respectively. In this way,

both the attributes and structure of attributed graph can be modeled

for learning edge representations.

Our graph meta knowledge learner has 𝑀 iterations, and the

final output representations will be used as the meta knowledge

for modeling ST correlations. In particular, the receptive field of

each node or edge increases exponentially with respect to𝑀 . Thus,

the selection of hyper-parameter 𝑀 refers to how far the charac-

teristics of nodes and edges can impact each other according to

the real-world datasets. In summary, our graph meta knowledge

learner can extract node and edge meta knowledge by aggregating

neighbors’ information, such that it can tackle the complex impacts

of attributes and graph structure.

3.3 Meta Learners
As ST correlations of STGs are impacted by the characteristics of

the attributed graph, we propose to learn the adjacency matrices of

SC layer and kernels of TC layer from the meta knowledge of the

attributed graph by meta learners. In this subsection, we introduce

the meta learners for SC layer and TC layer in detail.

SC-Meta Learner. As spatial correlations are impacted by edge

meta knowledge, we employ SC-meta learners to learn adjacency

matrices from the edge meta knowledge E (𝑀) ∈ R𝑁𝑙×𝑁𝑙×𝐾
, which

consists of

{
𝒆 (𝑀)
𝑖 𝑗
∈ R𝐾 | ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∈ E

}
. First, it employs an FC layer

to learn edge representation E ∈ R𝑁𝑙×𝑁𝑙×𝐾 ′
, which is composed

of

{
𝒆𝑖 𝑗 ∈ R𝐾

′ | ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∈ E
}
. Each vector 𝒆𝑖 𝑗 is computed by:

𝒆𝑖 𝑗 = Wmat𝒆
(𝑀)
𝑖 𝑗
+ 𝑏mat, (9)

where Wmat ∈ R𝐾
′×𝐾

, 𝑏mat ∈ R are learnable weights and bias,

respectively. Then Equation (3) is adopted to generate the adjacency

matrices, i.e., A = DM (E). Finally, we can use these adjacency

matrices to compute SC (H ,A,W) according to Equation (5).

TC-Meta Learner. As temporal correlations depend on node meta

knowledge, we employ TC-meta learner to generate the convolution

kernels K =
{
K1, ...,K𝑁𝑙

}
from V(𝑀) =

[
𝒗 (𝑀)
1

, ..., 𝒗 (𝑀)
𝑁𝑙

]
∈ R𝑁𝑙×𝐷

.

Suppose each K𝑖 has 𝑁ker
weights. We learn all these weights by

an FC layer from vector 𝒗 (𝑀)
𝑖

, and then reshape the output vector

to the tensor shape of K𝑖 , which can be expressed as:

K𝑖 = reshape

(
W

ker
𝒗 (𝑀)
𝑖
+ 𝑏

ker

)
, (10)

where W
ker
∈ R𝑁ker

×𝐷
, 𝑏 ∈ R are learnable weight and bias, re-

spectively. After generating kernels K, we can adopt Equation (6)

to compute TC (H ,K).

3.4 Searching Algorithm
In our AutoSTG, all computations are differentiable. Thus we can

employ a bi-level gradient-based optimization algorithm likeDARTS

[15], that updates network weight parameter set Θ (including the

parameters in operations, graphmeta knowledge learners, andmeta

learners) and architecture parameter set Λ (including the scores

of candidate operations) alternately. As shown in Algorithm 1, we

first construct datasets, and then initialize all parameters (Line 1-

2). After that, we alternately adopt a training dataset to update

weight parameters (Line 4-6) and a validation dataset to update

architecture parameters (Line 7-8), until the stopping criteria is met.

At last, we can acquire the optimal architecture by selecting the

candidate operations with the highest operation scores, and adopt

the training dataset to further train the network weight parameters

of this neural architecture like normal neural networks (Line 10).

Algorithm 1: Optimization algorithm of AutoSTG

input :STG data

[
X1, ...,X𝑁𝑡

]
, attributes V(0) and E (0)

1 Build Dtrain, Dvalid from
[
X1, ...,X𝑁𝑡

]
, V(0) , and E (0)

2 Initialize Θ and Λ

3 do
4 Sample D

batch
from Dtrain

5 // For efficiency, we adopt first-order approximation

6 𝜃 ← 𝜃 − 𝜆Θ∇𝜃L (Θ,Λ,Dbatch) , ∀𝜃 ∈ Θ // 𝜆Θ is learning rate

7 Sample D
batch

from D
valid

8 𝛼 ← 𝛼 − 𝜆Λ∇𝛼L (Θ,Λ,Dbatch) , ∀𝛼 ∈ Λ // 𝜆Λ is learning rate

9 until stopping criteria is met
10 Get the learned architecture, and further train it using Dtrain

4 EVALUATION
In this section, we present the experimental results of AutoSTG.

To support the reproducibility, we release our datasets, codes, and

pretrained models on https://github.com/panzheyi/AutoSTG.

https://github.com/panzheyi/AutoSTG
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4.1 Experimental Settings
4.1.1 Task Descriptions. We conduct experiments on two real-

world traffic prediction tasks, by using datasets released by [12]:

• PEMS-BAY. This dataset contains the traffic speed readings of

the 325 sensors collected by the California Transportation Agen-

cies Performance Measurement System.

• METR-LA. This dataset contains the traffic speed readings of

the 207 sensors on the highway of Los Angeles County.

Table 2: Statistics of two datasets.
Dataset PEMS-BAY METR-LA

Time 1/1/2017-6/30/2017 3/1/2012-6/30/2012

Time interval 5 minutes 5 minutes

# timestamps 52116 34272

# nodes 325 207

# edges 5200 3312

Table 2 shows the data statistics.We adopt the GPS coordinates of

sensors as node attributes and the road distance between sensors as

edge attributes to build the attributed graph G. The edge attributes
are collected in both directions like [12]. We predict the next 1-hour

traffic speed given the previous 1-hour traffic speed and G. Both
datasets are partitioned along the time axis into non-overlapping

subsets by a ratio of 7:1:2 for training, validating, and testing.

4.1.2 Metrics. Mean absolute error (MAE) and rooted mean square

error (RMSE) are adopted to evaluate our framework:

MAE =
1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | , RMSE =

√√√
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2,

where 𝑁 is the number of instances, 𝑦𝑖 is the predicted value, and

𝑦𝑖 is the ground truth.

4.1.3 Baselines. We first compare AutoSTG with the following

STG prediction models for urban traffic:

• HA. Historical Average. We model urban traffic as a seasonal pro-

cess with a one-day period and take the average of the previous

seasons as the prediction results.

• GBRT. Gradient Boosting Regression Tree is a non-parametric

statistical learning method for regression problems. For each

future timestamp, we train a GBRT for its prediction, where the

previous traffic speed and node attributes are given as the inputs.

• GAT-Seq2Seq [16]. It employs a sequence-to-sequence architec-

ture and graph attention networks for STG prediction.

• DCRNN [12]. It combines diffusion convolution operations and

sequence-to-sequence architecture to predict STGs.

• Graph WaveNet [21]. It uses graph convolution network and

WaveNet to model spatial and temporal correlations, respectively.

A self-adaptive adjacency matrix is also learned to discover un-

seen graph structures from data without any prior knowledge.

• ST-MetaNet+ [17]. This model consists of two types of meta

learned structures, i.e., meta graph attention network
+
and meta

recurrent neural network
+
, capable of capturing diverse spatial

and temporal correlations of STGs, respectively.

In addition, we compare AutoSTG with two basic NAS methods:

• RANDOM. We randomly sample neural architectures from our

search space, and train it from scratch for STG prediction.

• DARTS [15]. It employs continuous relaxation on candidate oper-

ations, enabling gradient-based optimization on network weight

parameters and architecture parameters. In our experiments,

basic DARTS framework (i.e., without graph meta knowledge

learner and meta learners) is employed on our search space for

STG prediction.

4.1.4 Framework Settings and Training Details. In our implementa-

tion, we add ReLU activation and Batch Normalization (BN) into

SC and TC, for non-linear projection and easy training. The or-

der is ReLU-X-BN, where X denotes SC or TC layer. In addition,

we employ the operation sampling technique introduced in [2] to

save the GPU memory consumption in the searching process. The

hyper-parameter settings of our framework contain the following

parts, and we conduct grid search to find the best setting:

• We search the number of cells over {1, 2, 3, 4, 5, 6}.
• We search the number of vertices in each cell over {2, 3, 4, 5}.
• We search the number of cell hidden units over {16, 32, 64}.
• We search the number of iterations in graph meta knowledge

learner over {0, 1, 2, 3}.
Our framework is tested on Ubuntu 16.04 with a single GTX 1080Ti

GPU. The batch size is set as 24 for PEMS-BAY dataset and 48

for METR-LA dataset, respectively. We adopt Adam optimizer to

search the architectures for 60 epochs with 64 iterations per epoch

(about 12 hours in total). After that, we reinitialize the optimizer

and further train the architecture for another 60 epochs (about 5

hours). In both searching and training processes, the initial learning

rate is 0.01, and it reduces by a factor of 10-fold every 10 epochs.

4.2 Performance Comparison
Table 3 shows the performance of the baselines and the architectures

provided by our framework. Specifically, we present the prediction

performance at the next 3/6/12 timestamps as well as the overall

results, which stands for the average loss over all the output times-

tamps. We train and test each model five times with different ran-

dom seeds, and present the results in the format: “mean±standard
deviation”. In particular, our AutoSTG provides five architectures

in each task by using different random seeds.

First, the non-deep-learning models, i.e., HA and GBRT, achieve

the worst performance on these two tasks, because these models

only consider the human-crafted statistical features of input data.

As STGs are very complex, the ST correlations related to attributed

graphs cannot be fully described by human’s prior knowledge, i.e.,
human-crafted features. As a result, the non-deep-learning models

have limitations on model expressiveness.

Second, GAT-Seq2Seq employs graph attention networks and

sequence-to-sequence architecture to capture ST correlations. As

it learns high-level ST features from data, it achieves large im-

provement over non-deep-learning models. Moreover, DCRNN and

Graph WaveNet use diffusion convolution for capturing spatial cor-

relations. Particularly, edge attributes (road distance) are adopted

to generate diffusion matrices by a pre-defined function. Such ad-

ditional knowledge can further improve the prediction accuracy.

However, designing such pre-defined function depends on the prior

knowledge of datasets. As prior knowledge differs in different tasks

and sometimes could be very complex, it is hard to find a perfect

way to use these attributes. To overcome this issue, ST-MetaNet
+
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Table 3: Predictive performance on PEMS-BAY and METR-LA datasets.

MAE (↓) RMSE (↓)

PEMS-BAY Overall 15 min 30 min 60 min Overall 15 min 30 min 60 min

HA 3.84±0.00 3.84±0.00 3.84±0.00 3.84±0.00 7.16±0.00 7.16±0.00 7.16±0.00 7.16±0.00
GBRT 1.96±0.02 1.49±0.01 1.99±0.02 2.61±0.04 4.48±0.00 3.21±0.00 4.51±0.01 5.76±0.02
GAT-Seq2Seq 1.74±0.00 1.38±0.01 1.79±0.00 2.26±0.01 4.08±0.01 2.94±0.01 4.10±0.01 5.22±0.04
DCRNN 1.59±0.00 1.31±0.00 1.65±0.01 1.97±0.00 3.70±0.02 2.76±0.01 3.78±0.02 4.60±0.02
Graph WaveNet 1.59±0.00 1.31±0.01 1.65±0.01 1.98±0.03 3.66±0.04 2.75±0.01 3.73±0.04 4.56±0.06
ST-MetaNet

+
1.60±0.01 1.31±0.00 1.66±0.06 1.99±0.01 3.72±0.02 2.78±0.01 3.81±0.01 4.62±0.04

AutoSTG 1.56±0.01 1.31±0.00 1.63±0.01 1.92±0.01 3.57±0.02 2.76±0.01 3.67±0.02 4.38±0.03
METR-LA Overall 15 min 30 min 60 min Overall 15 min 30 min 60 min

HA 4.79±0.00 4.79±0.00 4.79±0.00 4.79±0.00 8.72±0.00 8.72±0.00 8.72±0.00 8.72±0.00
GBRT 3.86±0.01 3.16±0.00 3.85±0.00 4.86±0.01 7.49±0.01 6.05±0.00 7.50±0.00 9.10±0.02
GAT-Seq2Seq 3.28±0.00 2.83±0.01 3.31±0.00 3.93±0.01 6.66±0.01 5.47±0.01 6.68±0.00 8.03±0.02
DCRNN 3.04±0.01 2.67±0.00 3.08±0.01 3.56±0.01 6.27±0.03 5.18±0.01 6.20±0.03 7.53±0.04
Graph WaveNet 3.05±0.01 2.70±0.01 3.08±0.01 3.55±0.12 6.16±0.03 5.16±0.01 6.20±0.03 7.35±0.05
ST-MetaNet

+ 3.00±0.01 2.65±0.01 3.04±0.01 3.48±0.02 6.16±0.02 5.11±0.01 6.16±0.02 7.37±0.04
AutoSTG 3.02±0.00 2.70±0.01 3.06±0.00 3.47±0.01 6.10±0.01 5.16±0.01 6.17±0.01 7.27±0.01

introduces meta learning to capture the relationships between at-

tributes and ST correlations, and achieves comparable accuracy by

using much less trainable parameters.

Different from these baselines, our AutoSTG is capable of au-

tomatically learning neural architectures to capture ST correla-

tions, and achieves stable and competitive prediction accuracy com-

pared with these expert-designed networks. Especially in PEMS-

BAY dataset, it improves the prediction accuracy over 2% than the

previous state-of-the-art results in terms of both MAE and RMSE.

Notice that the architectures provided by our AutoSTG have

528k±36k and 496k±31k trainable parameters (mean±std) for PEMS-

BAY and METR-LA dataset, respectively, more than that of DCRNN

(372k), Graph WaveNet (297k), and ST-MetaNet
+
(162k). However,

we cannot improve the accuracy of these baselines by adding more

parameters. This fact can also somehow illustrate the effectiveness

of our searching algorithm. And in our future work, we will try to

control the trainable parameters in NAS framework.

4.3 Ablation Studies
In this subsection, we conduct ablation studies for AutoSTG. First,

we evaluate the effectiveness of our candidate operation set. We

compared our framework with three variants: 1) w/o SC & TC,
which replaces SC and TC with FC operation in our candidate

operation set; 2) w/o SC, which removes SC from the candidate

operation set; and 3)w/o TC, which removes TC from the candidate

operation set. As shown in Figure 6, both SC and TC can improve

the prediction accuracy in modeling STGs. In particular, SC makes

more contributions to the final results, whereas TC shows less

improvement. The reason is that the temporal pooling layers can

somehow capture temporal correlations by aggregating information

in the temporal domain. In contrast, spatial correlations can only be

captured by our SC operation. As a result, removing SC operation

makes the performance degrade significantly.

w/o SC & TC
w/o SC

w/o TC
AutoSTG

(a) PEMS-BAY dataset

1.5

1.6

1.7

M
AE

w/o SC & TC
w/o SC

w/o TC
AutoSTG

(b) METR-LA dataset

2.8
2.9
3.0
3.1
3.2
3.3

M
AE

Figure 6: Ablation studies on candidate operations.

Second, we conduct experiments to verify the effectiveness of

each framework component by using the following NAS meth-

ods: 1) RANDOM, which samples an architecture from our search

space and then trains this architecture for prediction; 2) DARTS,
which removes meta learning method in our framework; and 3)

w/o graph, which replaces the graph representation learning net-

work (i.e., the graph meta knowledge learner) with the basic fully

connected networks for representation learning of nodes and edges

like [16]. As shown in Figure 7, our AutoSTG performs significantly

RANDOM
DARTS

w/o graph
AutoSTG

(a) PEMS-BAY dataset

1.40
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AE
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(b) METR-LA dataset
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3.00
3.05
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Figure 7: Ablation studies on framework components.

better than these variants that removes architecture search process

(RANDOM), meta learning technique (DARTS), or graph repre-

sentation learning network (w/o graph), illustrating that all these

components are effective to model STGs.
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4.4 Evaluation on Framework Settings
AutoSTG has several hyperparameters, including the number of

cells, the number of vertices in each cell, the number of hidden

units of each cell, and the number of iterations in graph meta

knowledge learner. To investigate the robustness of our AutoSTG,

for each hyperparameter, we present the prediction accuracy under

different choices of it by fixing the other hyperparameters.

Figure 8 presents the evaluation results of these hyperparameters.

As shown in Figure 8(a), Figure 8(b), Figure 8(e), and Figure 8(f), the

number of cells and the number of vertices in each cell are related to

the number of network operations in candidate neural architectures.

Increasing these values can promote network expressiveness at

first, but then lead to overfitting as too many trainable parameters

are introduced into candidate architectures. Likewise, as shown in

Figure 8(c) and Figure 8(g), increasing the number of hidden units

(i.e., feature dimension) can also promote the capability of network

structures, but too large dimension would degrade the performance.
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Figure 8: Studies on hyperparameters.

Different from the above hyperparameters, the number of it-

erations in graph meta knowledge learner does not significantly

impact the number of trainable parameters. For example, in our ex-

periments, there are only several thousands of parameters in graph

meta knowledge leaner, much less than the parameters in network

architecture. However, as shown in Figure 8(d) and Figure 8(h),

adopting more iterations can also improve the prediction results.

The reason is that this hyperparameter reflects the receptive field of

node and edge characteristics. Aggregating neighbors’ information

for nodes and edges can enlarge such receptive field and tackle

graph structure in advance, helping AutoSTG learn better repre-

sentations of attributed graph. Nevertheless, as simply stacking

amounts of graph convolutional network is hard to be optimized,

too many iterations would also lower the accuracy. Therefore, that

is a trade-off to set this hyperparameter in real-world tasks.

4.5 Empirical Studies of Learned Architectures
In general, the properties of datasets are different, and accordingly

the neural architectures diverse. To verify it, first we study the prop-

erties of PEMS-BAY and METR-LA dataset. As the distributions

show in Figure 9(a), vehicles often keep high speed in PEMS-BAY

dataset, while the speed in METR-LA dataset is much slower, indi-

cating more traffic jams. Intuitively, when traffic congestion occurs,

the traffic of a node has a larger impact on the nearby nodes’ traffic,

whereas if vehicles keep high speed, the traffic speed of nodes are

less correlated. As shown in Figure 9(b), we present the distributions

of Pearson correlations between all pairs of nodes, and it illustrates

(a) Distributions of traffic data

(b) Distributions of spatial correlations

Figure 9: Statistics of PEMS-BAY and METR-LA dataset.

that the traffic data of PEMS-BAY dataset is much less correlated

than that of METR-LA dataset. Thus, empirically we need more

SC operations for predicting METR-LA dataset to achieve a larger

receptive field and capture long-distance spatial correlations.

Next, as shown in Figure 10, for each dataset, we learn 5 architec-

tures using different random seeds and plot the number of SC opera-

tions of these architectures. This figure shows that the architectures

for predicting METR-LA dataset contain nearly double amounts of

SC operations than that of PEMS-BAY dataset, which verifies our

assumption. Therefore, it demonstrates that our AutoSTG can find

customized architectures according to dataset properties.

Figure 10: The number of SC in the learned architectures.

5 RELATEDWORK
Deep Learning for Spatio-Temporal Graph. Deep learning was
widely adopted in STG prediction. For example, [4, 8, 20, 21, 23] com-

bined convolutional neural networks and graph convolutional neu-

ral networks for modeling STGs, while some other studies [3, 12, 28]

employed recurrent neural networks and graph convolutional neu-

ral networks for STG prediction. Moreover, [6, 7, 13, 19, 29] stud-

ied the usage of attention mechanisms to capture ST correlations.

Recently, [16, 17] leveraged meta learning method to model the

inherent relationships between graph attributes and diverse ST cor-

relations, and [27] proposed to learn graph structures from dynamic

states. These works provide insights (e.g., possible network struc-

tures) for STG prediction. However, designing models for specific

tasks requires substantial domain knowledge and large amounts

of expert efforts. By contrast, our work can automatically search
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promising neural architectures for STGs, which is more efficient

and cost-saving.

Neural Architecture Search.Many works have explored neural

architectures for grid-based data (e.g., image) or sequential data (e.g.,
natural language). At first, reinforcement learning was adopted to

search neural architectures [14, 18, 32]. Later, some one-shot algo-

rithms tried to generate the weights of the sampled architectures

by hypernetworks [1, 24]. By contrast, [15] proposed continuous

relaxation on candidate operators, enabling gradient-based opti-

mization on architecture parameters. Besides these conventional

data types, [11] proposed to search architectures for grid-based

ST data and [5, 31] employed NAS to model graph structure data.

However, these works cannot be directly applied to predict STGs,

as it has a different search space to model ST correlations, and

such correlations are affected by the meta knowledge of attributed

graph. To the best of our knowledge, we are the first to study NAS

algorithm for STG prediction.

6 CONCLUSION
In this paper, we propose a novel NAS framework, entitled AutoSTG,

for automated STG prediction. It employs SC and TC operations

in search space to model spatial and temporal correlations, respec-

tively. To capture the relationships between attributed graph and

ST correlations, we use a graph meta knowledge learner to extract

the graph characteristics, and then apply meta learning to generate

the diffusion matrices of SC layers and the kernels of TC layers

from the learned characteristics. We conduct extensive experiments

on two real-world benchmark datasets to demonstrate that our

AutoSTG can find promising architectures and achieve significant

prediction accuracy. In the future, we will extend our framework

to a broader set of STG prediction tasks, and further improve the

complexity and efficiency of the searched architectures.
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