
Urban Traffic Prediction from Spatio-Temporal Data
Using Deep Meta Learning

Zheyi Pan1, Yuxuan Liang4, Weifeng Wang1, Yong Yu1, Yu Zheng2,3,4, Junbo Zhang2,3,5∗
1Department of Computer Science and Engineering, Shanghai Jiaotong University, China

2JD Intelligent Cities Research, China
3JD Intelligent Cities Business Unit, China

4School of Computer Science and Technology, Xidian University, China
5Institute of Artificial Intelligence, Southwest Jiaotong University, China

{zhpan,wfwang,yyu}@apex.sjtu.edu.cn;{yuxliang,msyuzheng,msjunbozhang}@outlook.com

ABSTRACT

Predicting urban traffic is of great importance to intelligent trans-

portation systems and public safety, yet is very challenging because

of two aspects: 1) complex spatio-temporal correlations of urban

traffic, including spatial correlations between locations along with

temporal correlations among timestamps; 2) diversity of such spatio-

temporal correlations, which vary from location to location and

depend on the surrounding geographical information, e.g., points

of interests and road networks. To tackle these challenges, we pro-

posed a deep-meta-learning based model, entitled ST-MetaNet, to

collectively predict traffic in all location at once. ST-MetaNet em-

ploys a sequence-to-sequence architecture, consisting of an encoder

to learn historical information and a decoder to make predictions

step by step. In specific, the encoder and decoder have the same net-

work structure, consisting of a recurrent neural network to encode

the traffic, a meta graph attention network to capture diverse spatial

correlations, and a meta recurrent neural network to consider di-

verse temporal correlations. Extensive experiments were conducted

based on two real-world datasets to illustrate the effectiveness of

ST-MetaNet beyond several state-of-the-art methods.

CCS CONCEPTS

• Information systems→ Spatial-temporal systems;Datamin-

ing; • Computing methodologies → Neural networks.

KEYWORDS

Urban traffic; Spatio-temporal data; Neural network; Meta learning

ACM Reference Format:

Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, Junbo Zhang.

2019. Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta

Learning. In The 25th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining (KDD’19), August 4–8, 2019, Anchorage, AK, USA. ACM, NY,

NY, USA, 11 pages. https://doi.org/10.1145/3292500.3330884

∗Junbo Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330884

1 INTRODUCTION

Recent advances in data acquisition technologies and mobile com-

puting lead to a collection of large amounts of traffic data, such

as vehicle trajectories, enabling much urban analysis and related

applications [30]. Urban traffic prediction has become a mission-

critical work for the development of a smart city, as it can provide

insights for urban planning and traffic management to improve the

efficiency of public transportation, as well as give early warnings

for public safety emergency management [29]. However, predicting

urban traffic is very challenging because of complicated spatio-

temporal (ST) correlations.

Complex composition of ST correlations: Since traffic changes

on the spatial domain (e.g. along road networks), we employ a geo-

graph to describe the spatial structure, where each node denotes a

location and each edge represents the relation between locations,

as shown in Figure 1 (a). As urban traffic is highly dynamic, we

consider such correlations from the following two factors.

(a) Composition of ST correlations

(c) Diversity of ST correlations

Temporal correlations
Spatial correlations

Edge
Location

Time

(b) Distribution of geo-attributes

Time

In
flo

w

Morning
rush hour

Evening
rush hour

Flows in
the morning

Flows in
the evening

R2

R3

Business District
R1

Residence

Business
District

S1
S2 S3 S4

Figure 1: Challenges of urban traffic prediction.

• Spatial correlations. As the red arrow shown in Figure 1 (a), the

traffic of some locations affects mutually and changes all the time.

For example, traffic on road networks has strong spatial dependen-

cies [14]. When a car accident occurs near S3, the traffic jam could

quickly diffuse to its neighbors, i.e., S1, S2, and S4, on the geo-graph.

Such impact brings challenges to forecasting the traffic.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1720

• Temporal correlations. Given a location, the current readings

of its traffic, such as inflows and outflows, are correlated with its

precedents. For instance, the taxi flow of a region is affected by the

recent values, both near and far [27]. When a special event occurs

at S4 (e.g., a large concert), many people would go into the location

and such location status would hold for a long time.

As both types of correlations affect urban traffic, it is necessary

to simultaneously model such spatial and temporal correlations.

Diversity of ST correlations: In a city, characteristics of locations

and their mutual relationship are diverse, depending on their own

geo-graph attributes: 1) node attributes: the surrounding environ-

ment of a location, namely, nearby points of interests (POIs) and

density of road networks (RNs); 2) edge attributes: the relationship

between two nodes, such as the connectivity of roads and the dis-

tance between them. As shown in Figure 1 (b), District R1, R2 and

R3 have different distributions of POIs and road network structures.

Consequently, the characteristics of these districts are different,

and the trends of their inflows are diverse, as shown in Figure 1

(c), which demonstrates that districts with different characteristics

always have different types of ST correlations.

Nonetheless, locations with a similar combination of geo-graph

attributes can lead to similar characteristics and analogous types

of ST correlations. In Figure 1 (b), District R1 and R3 contain nu-

merous office buildings that indicate business districts, while R2

contains many apartments, denoting a residential district. In gen-

eral, citizens usually commute from home to their workplaces in

the morning, while return at night. Thus, business district R1 and

R3 witness similar upward trends of inflows in the morning, while

the residential district R2 meets a different rush hour in the evening,

as shown in Figure 1 (c). Therefore, modeling inherent relationship

between geo-graph attributes and ST correlations’ types plays an

essential role in urban traffic prediction.

Recently, although there has been significant growth of works

for urban traffic prediction as well as analogous ST prediction tasks,

the aforementioned challenges are still not tackled well. First of

all, some works [15, 22] focus on modeling ST correlations by a

single model for all locations. These methods cannot explicitly

model the inherent relationships between geo-graph attributes and

various types of ST correlations, as a result, such relationship is

hard to be learned without any prior knowledge. Another group

of works [16, 23, 28] adopt multi-task learning approaches, which

mainly build multiple sub-models for each location and all of these

sub-models are trained together by using similarity constraints

between locations. These methods depend on the prior knowledge

or strong assumption of the specific tasks, i.e., the location similarity.

However, such side information can only provide relatively weak

supervision, producing unstable & tricked, even ruinous results in

the complex real-world applications.

To tackle the aforementioned challenges, we propose a deep

meta learning based framework, entitled ST-MetaNet, for urban

traffic prediction. The main intuition is depicted in Figure 2. The

urban traffic prediction is a typical ST forecasting problem, whose

main factors include spatial and temporal correlations that are im-

plicitly affected by the characteristics of nodes (locations) and edges

(the mutual relation between two nodes). Intuitively, the charac-

teristic of a node is influenced by its attributes, like GPS locations

Weight
Generation

Road
Networks

Distance

POIs

Location

Model for ST correlations

Spatial
Correlation

Temporal
Correlation

Geographical
information

Unobserved
factors

Edge
Characteristics

Node
Characteristics

Models

Historical traffic Future traffic

Figure 2: Insight of the framework.

and nearby POIs. Likewise, the characteristic of an edge depends

on its attributes, e.g., road connectivity and the distance between

locations. Based on these insights, ST-MetaNet first extracts the

meta knowledge (i.e. characteristics) of nodes and edges from their

attributes, respectively. The meta knowledge is then used to model

the ST correlations, namely, generating weights of the prediction

networks. The contributions of our work are four folds:

• We propose a novel deep meta learning based model, named ST-

MetaNet, to predict urban traffic. ST-MetaNet leverages the meta

knowledge extracted from geo-graph attributes to generate the

parameter weights of a graph attention network and a recurrent

network within sequence-to-sequence architecture. As a result, it

can capture the inherent relation between geo-graph attributes and

diverse types of ST correlations.

• We propose a meta graph attention network to model spatial

correlations. The attention mechanism can capture the dynamic

mutual relationship between locations, with regard to their current

states. In addition, the weights of attention network are generated

by meta knowledge of nodes and edges extracted from geo-graph

attributes, such that it can model the diverse spatial correlations.

• We propose a meta gated recurrent neural network, which gen-

erates all weights of a normal gated recurrent unit from the meta

knowledge of each node. Thus each location has an unique model

for its unique type of temporal correlations.

• We evaluate ST-MetaNet on two tasks: taxi flow prediction and

traffic speed prediction. The experiment results verify that ST-

MetaNet can significantly improve urban traffic prediction, and

learn better traffic-related knowledge from geo-graph attributes.

2 PRELIMINARIES

In this section, we introduce the definitions and the problem state-

ment. For brevity, we present a table of notations in Table 1.

Table 1: Notations.

Notations Description

Nl , Nt Number of locations/timestamps.

τin, τout The number of timestamps for historical/future traffic

X = {Xt } The traffic readings at all timestamps.

V = {v (i) } The node attributes of location i .

E = {e (i j) } The edge attributes between location i and j .

Ni Neighborhoods of location i .

NMK(·) The function to learn meta knowledge of node.

EMK(·) The function to learn meta knowledge of edge.

дθ (·) The function to generate weights of parameter θ .

Suppose there are Nl locations, which report Dt types of traffic

information on Nt timestamps respectively.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1721

Meta-
GAT

Meta-
GAT

Meta-
GAT

RNN

Meta-
RNN

RNN

Meta-
RNN

RNN

Meta-
RNN

...

...

...

Meta-
GAT

Meta-
GAT

Meta-
GAT

RNN

Meta-
RNN

RNN

Meta-
RNN

RNN

Meta-
RNN

...

...

...

GO

NMK

MK

NMK

MK

NMK

MK

NMK

MK

NMK

MK

NMK

MK

Meta
Learner GATr

Load
weights

Inputs

Outputs

Meta
Learner RNNr

Load
weights

Inputs

Outputs

Edge attributes

Dist RN...
EMK

Node attributes

Loc POI...
NMK

MK

NMK-
Learner

EMK-
Learner

NMK

MK

(a) ST-MetaNet

(b) Meta-knowledge Learner (c) Meta-GAT

(d) Meta-RNN

Figure 3: Overview of ST-MetaNet.

Definition 1. Urban traffic. The urban traffic is denoted as a

tensor X = (X1, ...,XNt
) ∈ RNt×Nl×Dt , where Xt = (x

(1)
t , ...,x

(Nl)
t)

denotes all locations’ traffic information at timestamp t .
Definition 2. Geo-graph attribute. Geo-graph attributes rep-

resent locations’ surrounding environment and their mutual rela-

tions, which corresponds to node attributes and edge attributes respec-

tively. Formally, let G = {V, E} represent a directed graph, where

V = {v(1), ...,v(Nl)} and E = {e(i j) |1 ≤ i, j ≤ Nl } are lists of

vectors denoting the geographical features of locations and relations

between locations, respectively. Moreover, we use Ni = {j |e(i j) ∈ E}

to denotes the neighbors of node i .
Problem 1. Given previousτin traffic information (Xt−τin+1, ...,Xt)

and the geo-graph attributes G, predict the traffic information for all

locations in the next τout timestamps, denoted as (Ŷt+1, ..., Ŷt+τout).

3 METHODOLOGIES

In this section, we describe the architecture of ST-MetaNet for

traffic prediction, as shown in Figure 3 (a). Following the sequence-

to-sequence (Seq2Seq) architecture [18], ST-MetaNet is composed

of two separate modules: the encoder (blue parts) and the decoder

(green parts). The former one is used to encode the sequence of

input, i.e., historical information of urban traffic {Xt−τin+1, · · · ,Xt },
producing the hidden states {HRNN,HMeta-RNN}, which are used

as the initial states of the decoder that further predicts the output

sequence {Ŷt+1, ..., Ŷt+τout }.
More specifically, the encoder and the decoder have the same

network structures, consisting of four components:

1) RNN (recurrent neural network). We employ RNN to embed

the sequence of historical urban traffic, capable of learning long

range temporal dependencies.

2) Meta-knowledge learner . As shown in Figure 3 (b), we use two

fully connected networks (FCNs), named node-meta-knowledge

learner (NMK-Learner) and edge-meta-knowledge learner (EMK-

Learner), to respectively learn the meta-knowledge of nodes (NMK)

and edges (EMK) from node attributes (e.g., POIs and GPS locations)

and edge attributes (e.g., road connectivity and the distance between

locations). Then the learnedmeta knowledge is further used to learn

the weights of another two networks, i.e., graph attention network

(GAT) and RNN. Taking a certain node as an example, the attributes

of the node are fed into the NMK-Learner, and it outputs a vector,

representing the meta knowledge of that node.

3) Meta-GAT (meta graph attention network) is comprised of

a meta learner and a GAT, as shown in Figure 3 (c). we propose

employing a FCN as the meta learner, whose inputs are meta knowl-

edge of all nodes and edges, and outputs are the weights of GAT.

Meta-GAT can capture diverse spatial correlations by individually

broadcasting locations’ hidden states along edges.

4) Meta-RNN (meta recurrent neural network) is comprised of

a meta learner and a RNN, as shown in Figure 3 (d). The meta

learner here is a typical FCN whose inputs are meta knowledge

of all nodes and outputs are the weights of RNN for each location.

Meta-RNN can capture diverse temporal correlations associated

with the geographical information of locations.

3.1 Recurrent Neural Network

To encode the temporal dynamics of urban traffic, we employ a RNN

layer as the first layer of Seq2Seq architecture. There are various

types of RNN implementation for time series analysis. Among them,

as gated recurrent unit (GRU) [9] is a simple but effective structure,

we introduce GRU as a concrete example to illustrate ST-MetaNet.

Formally, a GRU is defined as:

ht = GRU(zt ,ht−1 |WΩ,UΩ,bΩ), (1)

where zt ∈ RD and ht ∈ RD
′
are the input vector and the encoding

state at timestamp t , respectively.WΩ ∈ RD
′×D andUΩ ∈ RD

′×D′

are weight matrices. bΩ ∈ R are biases (Ω ∈ {u, r ,h}). GRU derives

the vector representations of a hidden state, which is expressed as:

u =σ (Wuzt +Uuht−1 + bu)

r =σ (Wrzt +Urht−1 + br)

ht =u ◦ ht−1 + (1 − u) ◦ ϕ(Whzt +Uh (r ◦ ht−1) + bh),

(2)

where ◦ is the element-wise multiplication, σ (·) is sigmoid function,

and ϕ(·) is tanh function.

In urban traffic prediction, we collectively encode the traffic of

all nodes (locations). To make nodes’ encoding states in the same

latent embedding space such that we can quantify the relations

between them, RNN networks for all nodes share the same param-

eters. Suppose the input is Zt = (z
(1)
t , ..., z

(Nl)
t) where z

(i)
t is the

input of node i at timestamp t , we obtain hidden states for all nodes,

denoted as Ht = (h
(1)
t , ...,h

(Nl)
t), by the following formula:

h
(i)
t = GRU(z

(i)
t ,h

(i)
t−1 |WΩ,UΩ,bΩ), ∀i ∈ {1, ...,Nl }, (3)

More specifically, in ST-MetaNet the inputs of RNNs in the encoder

and decoder are Xt = (x
(1)
t , ...,x

(Nl)
t) and Ŷt = (ŷ

(1)
t , ..., ŷ

(Nl)
t),

respectively, as shown in Figure 3 (a).

3.2 Meta-Knowledge Learner

In urban area, characteristics of locations and their mutual relation-

ship are diverse, depending on geographical information, e.g., POIs

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1722

(a) Spatial correlations

MK(01) FCNmeta Weights01

FCN02

FCN01

FCN03

Load weights

Attention
weights

So
ftm

ax

Load weights

Load weights

Li
ne

ar

co
m

bi
na

tio
n

...

src
dst

Outputs of RNN

Weights02

Weights03

MK(02)

MK(03)
New state
of node src

Fetch inputs by node index

FCNmeta

FCNmeta

Shared parameters

Meta knowledge of
node src, node dst, and edge

(b) Meta Learner

(c) Graph Attention Network

(0, 1)

(0, 2)

(0, 3)

(src, dst)

Edges

Figure 4: Structure of meta graph attention network.

and RNs. Such diverse characteristics bring about various types

of ST correlations within urban traffic. Hence, we propose two

meta-knowledge learners to learn traffic-related embeddings (meta

knowledge) from geographical information, i.e., NMK-Learner and

EMK-Learner. As shown in Figure 3 (b), two meta-knowledge learn-

ers respectively employ different FCNs, in which input is the at-

tribute of a node or an edge, and the corresponding output is the

embedding (vector representation) of that node or edge. Since such

embeddings are used for generating weights of GAT and RNN to

capture ST correlations of urban traffic, the learned embeddings

can reflect traffic-related characteristics of nodes and edges. For

simplicity, we use NMK(v(i)) and EMK(e(i j)) to denote the learned

meta knowledge (embedding) of a node and an edge, respectively.

3.3 Meta Graph Attention

Urban traffic has spatial correlations that some locations are mutu-

ally affected and such impact is highly dynamic. In addition, spatial

correlations between two nodes are related to their geographical

information, and such correlations are diverse from node to node

and edge to edge. Inspired by graph attention network (GAT) [19],

we propose employing attention mechanism into the framework to

capture dynamic spatial correlations between nodes. However, it is

inappropriate to directly apply GAT because all nodes and edges

would use the same attention mechanism, ignoring the relationship

between geographical information and spatial correlations.

To capture diverse spatial correlations, we propose a meta graph

attention network (Meta-GAT) as shown in Figure 4, which employs

attention network whose weights are generated from the meta

knowledge (embeddings) by the meta learner. Consequently, the

networks for spatial correlation modeling are different from node

to node and edge to edge.

Formally, suppose the inputs of meta graph attention network

are H = (h(1), ...,h(Nl)) ∈ RNl×Dh (i.e., outputs of RNN at each

timestamp) and geo-graph attributesG = {V, E}, while the output

is H̄ = (h̄(1), ..., h̄(Nl)) ∈ RNl×Dh , where Dh is the dimension of

nodes’ hidden states. The meta graph attention mechanism for each

node mainly contains 2 steps: 1) attention score calculating for each

edge; and 2) hidden state aggregation. As shown in Figure 4, we

give an example to show Meta-GAT, that calculates the impact to

the red node from its neighborhoods (the purple, orange, and green

node) along edges. The details of Meta-GAT are as follows:

• Attention score calculation. The score of edge ij is related to the

hidden states of node i and node j , as well as the meta knowledge of

nodes and edge learned from geographical information. As shown

in Figure 4, for edge ij, the first step is fetching the hidden states

of nodes by index, i.e., h(i) and h(j), and meta knowledge MK(i j),

which is a composition of meta knowledge of nodes and edge:

MK(i j) = NMK(v(i)) ‖ NMK(v(j)) ‖ EMK(e(i j)),

where ‖ is the concatenation operator. Then we apply a function

to calculate the attention score, denoted as:

w(i j) = a(h(i),h(j),MK(i j)) ∈ RDh ,

where w(i j) is a Dh dimension vector, denoting the importance

of how h(j) impacts h(i) at each channel. Like GAT [19] shown in

Figure 4 (c), we employ a single fully connected layer to calculate

function a(·). However, different pairs of nodes have different node
and edge attributes, resulting in different patterns of edge attention

given the nodes’ states. To model such diversity, we employ an edge-

wise fully connected layer, followed by an activation of LeakyRelu:

a(h(i),h(j),MK(i j)) = LeakyReLU(W (i j)[h(i) ‖ h(j)] + b(i j)),

whereW (i j) ∈ RDh×2Dh , b(i j) ∈ R are edge-wise parameters of the

fully connected layer. In particular, these parameters are generated

by the meta learner from the meta knowledge as shown in Figure

4 (b). Formally, let дW and дb be FCNs within the meta learner to

generateW (i j) and b(i j) respectively, then for any edge (i, j):

W (i j) = дW (MK(i j)) ∈ R2Dh×Dh

b(i j) = дb (MK(i j)) ∈ R.

Note that the output of a FCN is a vector, so we need to reshape

the output to the corresponding parameter shape.

• Hidden state aggregation. Like GAT, we firstly normalize the

attention score for a node across all its neighborhoods by softmax:

α (i j) =
exp(w(i j))∑

j ∈Ni
exp(w(i j))

.

Then for each node, we calculate the overall impact of neighbor-

hoods by linear combinations of the hidden states corresponding

to the normalized weights and apply a nonlinearity function σ

(e.g., ReLU), which is expressed as σ (
∑
j ∈Ni

α (i j)h(j)). After that,

let λ(i) ∈ (0, 1) be a trainable parameter denoting the weights of

neighborhoods’ impact to node i . And finally, the hidden state for

node i with consideration of spatial correlations is expressed as:

h̄(i) = (1 − λ(i))h(i) + λ(i)σ (
∑

j ∈Ni
α (i j)h(j))

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1723

Since we extract meta knowledge from features of locations and

edges, and use such information to generate the weights of graph

attention network, Meta-GAT can model the inherent relationship

between geo-graph attributes and diverse spatial correlations.

3.4 Meta Recurrent Neural Network

Since temporal correlations of urban traffic vary from location to

location, a simple shared RNN (like Eq. 3) is not sufficient to capture

diverse temporal correlations. To model such diversity, we adopt

the similar idea of Meta-GAT to generate the weights of RNN from

node embeddings, which is learned by NMK-Learner from node

attributes (e.g., POIs and RNs).

Here we introduce Meta-GRU as a concrete example of Meta-

RNN. It adopts the node-wise parameters within GRU. Formally,

we define Meta-GRU as:

Ht = Meta-GRU(Zt ,Ht−1,V),

where Zt = (z
(1)
t , ..., z

(Nl)
t) and Ht = (h

(1)
t , ...,h

(Nl)
t) are the in-

puts and the hidden states at timestamp t , respectively, and V =

{v(1), ...,v(Nl)} is the node attributes. Then for any node i , the
current hidden states can be calculated by:

W
(i)
Ω =дWΩ (NMK(v(i)))

U
(i)
Ω =дUΩ (NMK(v(i)))

b
(i)
Ω =дbΩ (NMK(v(i)))

h
(i)
t =GRU(z

(i)
t ,h

(i)
t−1 |W

(i)
Ω ,U

(i)
Ω ,b

(i)
Ω),

whereW
(i)
Ω ,U

(i)
Ω and b

(i)
Ω are node-wise parameters generated from

v(i) by a meta learner which consists of three types of FCNs дWΩ ,

дUΩ , дbΩ (Ω ∈ {u, r ,h}). As a result, all nodes have their individual
RNNs respectively, and the models represent the temporal corre-

lations related to the node attributes. In ST-MetaNet, we take the

outputs of Meta-GAT as the inputs of Meta-RNN (i.e., Zt), accord-
ingly, both diverse spatial and temporal correlations are captured.

3.5 Algorithm of Optimization

Suppose the loss function for framework training is Ltrain, which

measures the difference between the prediction values and the

ground truth. We can train ST-MetaNet end-to-end by backpropaga-

tion. In specific, there are two types of trainable parameters. Let ω1

denote the trainable parameters in common neural networks (Sec-

tion 3.1), ω2 denote all trainable parameters in the meta-knowledge

learners (Section 3.2), and meta learners (Section 3.3 and Section

3.4). For parameter ω1 in common neural networks, the gradient of

it is ∇ω1Ltrain. As for parameterω2 in meta-knowledge learner and

meta learner which generates parameter θ , the gradient of ω2 can

be calculated by chain rule because both meta-knowledge learner

and meta learner are differentiable neural networks:

∇ω2Ltrain = ∇θLtrain∇ω2θ .

Algorithm 1 outlines the training process of ST-MetaNet. We first

construct training data (Lines 1-5). Then we iteratively optimizer

ST-MetaNet by gradient descent (Lines 7-12) until the stopping

criteria is met.

Algorithm 1: Training algorithm of ST-MetaNet

input :Urban traffic X = (X1, ..., XNt).

Node attributes V = {v (1), ..., v (Nl) }.

Edge attributes E = {e (i j) }.

1 Dtrain ← ∅

2 for available t ∈ {1, ..., Nt } do

3 Xinput ← (Xt−τin+1, ..., Xt)

4 Ylabel ← (Xt+1, ..., Xt+τout)

5 put {Xinput, V, E, Ylabel } into Dtrain

6 initialize all trainable parameters

7 do

8 randomly select a batch Dbatch from Dtrain

9 forward-backward on Ltrain by Dbatch

10 ω1 = ω1 − α∇ω1Ltrain // α is learning rate

11 ω2 = ω2 − α∇ω2Ltrain

12 until stopping criteria is met

13 output learned ST-MetaNet model

4 EVALUATION

4.1 Experimental Settings

Task Descriptions. We conduct experiments on two real-world

tasks of urban traffic prediction. We first introduce the two tasks,

and then illustrate the details of the datasets shown in Table 2.

Table 2: Details of the datasets.

Tasks Taxi flow prediction Speed prediction

Prediction target inflow & outflow traffic speed

Timespan 2/1/2015 - 6/2/2015 3/1/2012 - 6/30/2012

Time interval 1 hour 5 minutes

timestamps 3600 34272

nodes 1024 207

edges 4114 3726

node features 989 20

edge features 32 1

1) Taxi flow prediction. We adopt grid-based flow prediction task

[27] to evaluate our framework, where grids are regarded as nodes.

We partition the Beijing city into 32 × 32 grids, and then obtain

hourly taxi flows of each grid and the geo-graph attributes. The

details of the datasets are as follow:

• Taxi flow. We obtain taxi flows from TDrive dataset [25], which

contains a large amount of taxicab trajectories from Feb. 1st 2015

to Jun. 2nd 2015. For each grid, we calculate the hourly inflows and

outflows from these trajectories by counting the number of taxis

entering or exiting the grid.

• Geo-graph attributes. The node attributes of each grid consist of

many features of POIs and RNs within it, including the number of

POIs in each category, the number of roads and lanes, etc. The edge

attributes are the features of roads connecting pairs of grids, e.g.,

the number of roads and lanes connecting two grids, etc.

In this task, we use previous 12-hour flows to predict the next

3-hour flows. We partition the data on the time axis into non-

overlapping training, evaluation, and test data, by the ratio of 8:1:1.

2) Traffic Speed prediction. In this task, we predict the traffic

speed on road networks. The details of the datasets are as follow:

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1724

• Traffic speed. We adopt METR-LA dataset [12], which is collected

from loop detectors in the highway of Los Angeles County, and

then further processed and public by [14]. The data contains traffic

speed readings of 207 sensors (nodes). The readings are aggregated

into 5-minute windows.

• Geo-graph attributes. Since we do not have POI information, we

make use of locations and road networks as features of geo-graph.

The node attributes consist of GPS points of nodes, and road struc-

ture information for each node, i.e., a vector reflecting the road

distance between the node and its k-nearest neighbors. The edge

attribute is simply defined as the road distance between nodes. For

the efficiency of model training and testing, we only keep the edge

between each node and its k-nearest neighbors. Since the traffic

correlations are directional on road networks [14], we collect node

attributes and edge attributes on both directions respectively.

In this task, we set k = 8, and use previous 60-minute traffic

speed to predict speed in the next 60 minutes. We partition the

traffic speed dataset on the time axis into non-overlapping training,

evaluation, and test data, by the ratio of 7:1:2.

Metrics. We use mean absolute error (MAE) and rooted mean

square error (RMSE) to evaluate ST-MetaNet:

MAE =
1

n

n∑
i=1

|yi − ŷi |, RMSE =

√√
1

n

n∑
i=1

(yi − ŷi)2,

where n is the number of instances, ŷi is the prediction result and

yi is the ground truth.

Baselines. We compare ST-MetaNet with the following baselines:

• HA. Historical average. We model the urban traffic as the sea-

sonal process, where the period is one day. We use the average

values of the previous seasons as the prediction result.

• ARIMA. Autoregressive integrated moving average is a widely

used model for time series prediction, which combines moving aver-

age and autoregression. In the experiments, we train an individual

ARIMA model for each node, and predict future steps separately.

• GBRT. Gradient Boosting Regression Tree is a non-parametric

statistical learning method for regression problem. For each future

step (e.g., next 1 hour or next 2 hour), we train a single GBRT, and

predict the urban traffic, where the input consists of previous traffic

information and node attributes.

• Seq2Seq [18]. We implement a two-layer sequence-to-sequence

model for urban traffic prediction, where GRU is chosen as the

RNN implementation. The features of nodes, i.e., node attributes,

are added as the additional inputs. All nodes share the same model.

• GAT-Seq2Seq [19]. We employ graph attention network and

Seq2Seq to model spatial and temporal correlations, respectively.

It applies the similar structure as ST-MetaNet, which consists of a

GRU layer, a GAT layer, and a GRU layer. The node attributes, are

firstly embedded by FCN and then added as the additional inputs.

• ST-ResNet [27]. The model is widely used in grid-based flow pre-

diction task. It models the spatio-temporal correlations by residual

unit . We further fuse its output with node attributes, i.e., features

of grids, and then make predictions.

• DCRNN [14]. This model is state-of-the-art in traffic prediction

on road networks. it employs the diffusion convolution operator and

Seq2Seq to capture spatial and temporal correlations, respectively.

Framework Settings. The structure settings of ST-MetaNet con-

tains the following three parts:

• Structures of NMK-Learner and EMK-Learner. We simply employ

two FCNs (2 layers with the same number of hidden units) as NMK-

Learner and EMK-Learner respectively, to learn themeta knowledge

of nodes and edges.We conduct grid search on the number of hidden

units over {4, 8, 16, 32, 64}.

• Dimension of hidden states in Seq2Seq architecture. For simplic-

ity, we use the same number of hidden units in all components

(GRU, Meta-GAT, Meta-GRU) within the encoder and decoder, and

conduct grid search on the number over {16, 32, 64, 128}.

• Weight generation of meta learners. For each generated parame-

ters in Meta-GAT and Meta-GRU, i.e.,W(i j), b(i j),WΩ , UΩ , and bΩ ,
we simply build a FCN with hidden units [16,dд ,n] to generate pa-

rameter weights from the meta knowledge, where n is the number

of parameters in the target. We search on dд over {1, 2, 4, 8}.

The framework is trained by Adam optimizer [13] with gradient

clipping. To tackle the discrepancy between training and infer-

ence in Seq2Seq architecture, we employ inverse sigmoid decay for

schedule sampling [2] in the training phase.

4.2 Performance Results

The performance of the competing baselines and ST-MetaNet are

shown in Table 3. In addition, we also list the number of trainable

parameters involved in deep models to show the model complexity.

For deep models, we train and test each of them five times, and

present results as the format: "mean ±standard deviation".

In the task of taxi flow prediction, state-of-the-art (SOTA) refers

to ST-ResNet. We list the overall performance and the performance

of prediction in each hour, respectively. As shown in Table 3, ST-

MetaNet outperforms all the baselines on both metrics. Specifically,

ST-MetaNet shows over 9.6% and 5.8% improvements on overall

MAE and RMSE beyond ST-ResNet (SOTA), respectively. The rea-

sons are that ST-ResNet cannot utilize the road connection between

grids, and all grids use the same convolutional kernel without

considering the diversity of grid characteristics. Compared with

GAT-Seq2Seq, ST-MetaNet also achieves significant improvement,

because it explicitly models the inherent relationship between geo-

graphical information and ST correlations. Seq2Seq does not con-

sider spatial correlations and diversity of temporal correlations, so

it gets much larger error compared with other deep models. Con-

ventional methods, i.e., ARIMA and GBRT, are not good enough to

model urban traffic, due to the limitation of model expressiveness

and the incapability to fully leverage geographical information.

In the task of traffic speed prediction, SOTA refers to DCRNN.We

list the overall performance and the prediction results in the next 15

minute, 30 minute, and 60 minute (corresponding to future step 3,6,

and 12, respectively). Similar to taxi flow prediction, ST-MetaNet

significantly outperforms the conventional models, and simple deep

models, i.e., Seq2Seq. GAT-Seq2Seq and DCRNN are two powerful

models to simultaneously capture spatial and temporal correlations.

However, ST-MetaNet considers the inherent relationship between

geographical information and ST correlations in advance. Thus it

can obtain lower errors than GAT-Seq2Seq and DCRNN.

In Meta-GAT and Meta-GRU, we generate the parameter weights

defined in GAT and GRU, which would intuitively introduce more

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1725

Table 3: Performance results on taxi flow prediction and traffic speed prediction.

Models HA ARIMA GBRT Seq2Seq GAT-SeqSeq SOTA ST-MetaNet

Taxi flow

overall
MAE 26.2 40.0 28.8 21.3 ± 0.06 18.3 ± 0.13 18.7 ± 0.53 16.9 ± 0.13

RMSE 56.5 86.8 60.9 42.6 ± 0.14 35.6 ± 0.23 36.1 ± 0.59 34.0 ± 0.25

1h
MAE 26.2 27.1 22.3 17.8 ± 0.05 16.3 ± 0.12 16.8 ± 0.50 15.0 ± 0.14

RMSE 56.5 58.3 47.7 35.1 ± 0.07 31.9 ± 0.21 31.9 ± 0.69 29.9 ± 0.08

2h
MAE 26.2 41.2 29.8 22.0 ± 0.06 18.7 ± 0.12 18.9 ± 0.57 17.3 ± 0.14

RMSE 56.5 77.0 62.6 43.6 ± 0.16 36.3 ± 0.20 36.4 ± 0.71 34.7 ± 0.25

3h
MAE 26.2 51.8 34.2 24.2 ± 0.09 19.9 ± 0.14 20.3 ± 0.52 18.4 ± 0.10

RMSE 56.5 108.0 70.3 48.1 ± 0.20 38.4 ± 0.30 39.5 ± 0.46 37.1 ± 0.41

params - - - 333k 407k 445k 268k

Traffic Speed

overall
MAE 4.79 4.03 3.85 3.55 ± 0.01 3.28 ± 0.00 3.10 ± 0.01 3.05 ± 0.02

RMSE 8.72 7.94 7.48 7.27 ± 0.01 6.66 ± 0.01 6.31 ± 0.03 6.25 ± 0.02

15min
MAE 4.79 3.27 3.16 2.98 ± 0.01 2.83 ± 0.01 2.75 ± 0.01 2.68 ± 0.02

RMSE 8.72 6.14 6.05 5.88 ± 0.01 5.47 ± 0.01 5.33 ± 0.02 5.15 ± 0.02

30min
MAE 4.79 3.99 3.85 3.57 ± 0.01 3.31 ± 0.00 3.14 ± 0.01 3.09 ± 0.03

RMSE 8.72 7.78 7.50 7.26 ± 0.01 6.68 ± 0.00 6.45 ± 0.04 6.28 ± 0.02

60min
MAE 4.79 5.18 4.85 4.38 ± 0.01 3.93 ± 0.01 3.60 ± 0.02 3.60 ± 0.04

RMSE 8.72 10.10 9.08 8.88 ± 0.02 8.03 ± 0.02 7.65 ± 0.06 7.52 ± 0.01

params - - - 81k 113k 373k 85k

trainable parameters. However, as the number of parameters shown

in Table 3, ST-MetaNet uses less trainable parameters compared

with most of deep models. Particularly in traffic speed prediction,

ST-MetaNet uses only 23% trainable parameters compared with

DCRNN to obtain better results. This fact is related to the good

expressiveness of ST-MetaNet that small dimensional hidden states

in Meta-GAT and Meta-GRU can have better representation than

larger dimensional hidden states in GAT and GRU. Thus the exper-

iments can demonstrate the superiority of ST-MetaNet.

4.3 Evaluation on Meta Networks

To illustrate the effectiveness of each meta learning components,

we conduct experiments on five models, including GRU (two GRUs),

Meta-GRU (GRU and Meta-GRU), GAT (GRU, GAT, and GRU), Meta-

GAT (GRU, Meta-GAT, and GRU), and ST-MetaNet, where the net-

works in parenthesis denote the layers in Seq2Seq architecture.

As shown in Figure 5, themeta learning basedmodels outperform

the conventional models consistently. Specifically, Meta-GRUs are

better than GRUs, and Meta-GATs are better than GATs in both

tasks. In addition, ST-MetaNet combines both structures of Meta-

GRU and Meta-GAT, achieving the best results among all variants.

Therefore, the meta-learning-based networks are more effective in

modeling ST correlations than conventional network structures.

Figure 5: Evaluation on the meta networks

4.4 Evaluation on Framework Settings

ST-MetaNet has many settings, including the number of hidden

units within Seq2Seq, the dimension of meta knowledge (outputs of

NMK-Learner and EMK-Learner), and the number of hidden units

for weight generation. To investigate the robustness of ST-MetaNet,

we present the results under various parameter settings.

First, as shown in Figure 6 (a) and Figure 7 (a), increasing the

value of meta knowledge dimension enhances the performance

significantly in both tasks. As the dimension of meta knowledge

does not impact the number of trainable parameters in the Seq2Seq

architecture, this fact illustrates that the meta knowledge learned

from geo-graph attributes essentially takes effect.

Then in taxi flow prediction task, Figure 6 (b) shows that increas-

ing the number of hidden units in Seq2Seq initially lowers the MAE

but then easily overfit when it is too large. While in Figure 6 (c), it

presents that the performance is not very sensitive to the number

of hidden units for weight generation. In contrast, in traffic speed

prediction task, Figure 7 (b) and (c) shows that the performance of

traffic speed prediction is very sensitive to the number of hidden

units for weight generation, but somehow stable when changing the

number of hidden units in Seq2Seq. The reason is that the taxi flow

dataset only contains 3600 timestamps, but has 1024 nodes. As a

result, less temporal information for Seq2Seq training leads to easily

overfitting, but large amounts of nodes make the model effortlessly

utilize the geographical information for weight generation. On the

contrary, traffic speed prediction task has 34272 timestamps, but

only 207 nodes, making it easily overfit when changing the number

of hidden units for weight generation, while stable when changing

the number of hidden units in Seq2Seq. Overall, the quantity of

data can impact the selection of the two parameters.

Figure 6: Impact of parameters in taxi flow prediction.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1726

Figure 7: Impact of parameters in traffic speed prediction.

4.5 Evaluation on Meta Knowledge

A good meta learner should obtain the representation of nodes

which can reflect traffic similarity. To validate the effectiveness of

meta knowledge, for each node we firstly find its k-nearest neigh-
bors in the node embedding space, and then evaluate the similarity

of traffic sequences between the node and its neighbors. We employ

Pearson correlations and the first order temporal correlations [8],

denoted as CORR and CORT respectively, to measure the similar-

ity between two traffic sequences. The similarity functions can be

expressed as:

CORR(x, y) =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
√∑

i (yi − ȳ)2
,

CORT(x, y) =

∑
i (xi − xi−1)(yi − yi−1)√∑

i (xi − xi−1)2
√∑

i (yi − yi−1)2
,

where x, y are two temporal sequences, and x̄ , ȳ are their mean

values. Note that−1 ≤ CORR, CORT ≤ 1, and the larger the criteria

are, the more similar the two sequences are.

We compare ST-MetaNet with GAT-Seq2Seq, which uses the

same Seq2Seq architecture but adopts data fusion strategy to in-

corporate geographical and traffic information rather than meta

learning. As shown in Figure 8, we calculate the traffic similarity on

test dataset between each node and its neighbors. The node embed-

dings of ST-MetaNet in taxi flow prediction task shows significant

improvement over embeddings of GAT-Seq2Seq, which implies that

ST-MetaNet learns a better geographical representation that reflects

the traffic situation. While in traffic prediction task, there is some

improvement, but less than the improvement in taxi flow prediction.

The reason is that we have much less geographic information in

this task. Nonetheless, the result still shows that ST-MetaNet can

effectively learn better traffic-related representations.

4.6 Case Study

We further illustrate the effectiveness of ST-MetaNet by performing

a case study. A good embedding space should have the characteris-

tic that nearby grids have similar flows. We compare ST-MetaNet

with GAT-Seq2Seq by the taxi inflows of three representative grids

in Beijing: Yongtai Yuan (residential district), Zhongguancun (busi-

ness district), and Sanyuan Bridge (viaduct). As shown in Figure 9

(a), the flows of selected grids are obviously distinct from the flows

of their neighborhoods produced by GAT-Seq2Seq. While as pre-

sented in Figure 9 (b), ST-MetaNet obtains an embedding space that

nearby grids have very similar flows. This case demonstrates that

ST-MetaNet learns a reasonable representation of nodes, and cap-

tures the inherent relationship between geographical information

and ST correlations of urban traffic.

(b) Traffic speed prediction

(a) Taxi flow prediction

Figure 8: Evaluation on traffic similarity between each node

and its k-nearest neighbors in the embedding space.

5 RELATEDWORK

Urban Traffic Prediction. There are some previously published

works on predicting an individual’s movement based on their loca-

tion history [10, 17]. They mainly forecast millions of individuals’

mobility traces rather than the aggregated traffic flows in a region.

Some other researchers aim to predict travel speed and traffic vol-

umes on roads [1]. Most of them predict single or multiple road

segments, rather than citywide ones [6]. Recently, researchers have

started to focus on city-scale traffic prediction [14, 27].

Deep Learning for Spatio-Temporal Prediction. Deep learning

has powered many application in spatio-temporal areas. In specific,

the architectures of CNNs were widely used in grid data modeling

like citywide flow prediction [27] and taxi demand inference [24].

Besides, RNNs [9] became popular due to their success in sequence

learning, however, these models discard the unique characteristics

of spatio-temporal data, e.g., spatial correlation. To tackle this is-

sue, several studies were proposed, such as video prediction [21]

and travel time estimation [20]. Very recent studies [7, 15] have

indicated that the attention mechanism enables RNNs to capture

dynamic spatio-temporal correlation in geo-sensory data.

Meta Learning for Neural Networks’ Weight Generation. [3]

proposed dynamic filter network to generate convolutional filters

conditioned on the input. [4] used a learnet to predict the param-

eters of a pupil network from a single examplar. [11] employed

hypernetworks to generate weights of a large network, which can

be regarded as weight sharing across layers. Recently, [5] proposed

meta multi-task learning for NLP tasks, which learns task-specific

semantic function by a meta network. [26] proposed embedding

neural architecture and adopting hypernetwork to generate its

weights, to amortize the cost of neural architecture search.

Unlike the above works, we aim to model the diverse ST corre-

lation. To the best of our knowledge, we are the first to study the

inherent relationship between geographical information and ST

correlations, and apply meta learning on the related application,

i.e., urban traffic prediction.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1727

(b) The proposed model(a) Seq2seq integrated with graph attention

R
es

id
en

tia
l

di
st

ric
t

Bu
sin

es
s

di
st

ric
t

vi
ad

uc
t

Figure 9: The inflows of representative grids. G0 is the selected grid having special function, i.e., residential district, business

district, and viaduct. Gk (k > 0) denotes the k-nearest neighbors of G0 in the embedding space produced by the models.

6 CONCLUSION AND FUTUREWORK

We proposed a novel deep meta learning framework, named ST-

MetaNet, for spatio-temporal data with applications to urban traffic

prediction, capable of learning traffic-related embeddings of nodes

and edges from geo-graph attributes and modeling both spatial

and temporal correlations. We evaluated our ST-MetaNet on two

real-world tasks, achieving performance which significantly outper-

forms 7 baselines. We visualized the similarity of meta-knowledge

learned from geographical information, showing the interpretation

of ST-MetaNet. In the future, we will extend our framework to

a much broader set of urban ST prediction tasks and explore the

usage of such representation in other traffic-related tasks.

ACKNOWLEDGMENTS

Thework is supported by APEX-MSRA Joint Research Program, and

the National Natural Science Foundation of China Grant (61672399,

U1609217, 61773324, 61702327, 61772333, and 61632017).

REFERENCES
[1] Afshin Abadi, Tooraj Rajabioun, Petros A Ioannou, et al. 2015. Traffic Flow

Prediction for Road Transportation Networks With Limited Traffic Data. IEEE
Trans. Intelligent Transportation Systems (2015).

[2] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent neural networks. In NIPS.

[3] De Brabandere Bert, Xu Jia, Tinne Tuytelaars, and Luc V Gool. 2016. Dynamic
filter networks. In NIPS.

[4] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi.
2016. Learning feed-forward one-shot learners. In NIPS.

[5] Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing Huang. 2018. Meta Multi-
Task Learning for Sequence Modeling. arXiv preprint arXiv:1802.08969 (2018).

[6] Po-Ta Chen, Feng Chen, and Zhen Qian. 2014. Road traffic congestion monitoring
in social media with hinge-loss Markov random fields. In ICDM. IEEE.

[7] Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. 2018. A Neu-
ral Attention Model for Urban Air Quality Inference: Learning the Weights of
Monitoring Stations.. In AAAI.

[8] Ahlame Douzal Chouakria and Panduranga Naidu Nagabhushan. 2007. Adaptive
dissimilarity index for measuring time series proximity. ADAC (2007).

[9] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[10] Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro Adachi. 2015. CityMo-
mentum: an online approach for crowd behavior prediction at a citywide level.
In UBICOMP. ACM.

[11] David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint
arXiv:1609.09106 (2016).

[12] HV Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou,
Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big data and its
technical challenges. Commun. ACM (2014).

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting. (2018).

[15] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Geo-
MAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction..
In IJCAI.

[16] Ye Liu, Yu Zheng, Yuxuan Liang, Shuming Liu, and David S Rosenblum. 2016.
Urban water quality prediction based on multi-task multi-view learning. (2016).

[17] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki. 2014.
Prediction of human emergency behavior and their mobility following large-scale
disaster. In SIGKDD. ACM.

[18] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In NIPS.

[19] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[20] Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When Will You
Arrive? Estimating Travel Time Based on Deep Neural Networks. AAAI.

[21] YunboWang, Mingsheng Long, JianminWang, Zhifeng Gao, and S Yu Philip. 2017.
Predrnn: Recurrent neural networks for predictive learning using spatiotemporal
lstms. In NIPS.

[22] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to Estimate the Travel Time.
In SIGKDD (KDD ’18).

[23] Jianpeng Xu, Pang-Ning Tan, Lifeng Luo, and Jiayu Zhou. 2016. Gspartan: a
geospatio-temporal multi-task learning framework for multi-location prediction.
In SDM. SIAM.

[24] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,
and Jieping Ye. 2018. Deep multi-view spatial-temporal network for taxi demand
prediction. (2018).

[25] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,
and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories. In
SIGSPATIAL. ACM.

[26] Chris Zhang, Mengye Ren, and Raquel Urtasun. 2018. Graph HyperNetworks for
Neural Architecture Search. arXiv preprint arXiv:1810.05749 (2018).

[27] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction.. In AAAI.

[28] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ra-
makrishnan. 2015. Multi-task learning for spatio-temporal event forecasting. In
SIGKDD. ACM.

[29] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing:
concepts, methodologies, and applications. TIST (2014).

[30] Yu Zheng, Yanchi Liu, Jing Yuan, and Xing Xie. 2011. Urban computing with
taxicabs. In UBICOMP. ACM.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1728

A APPENDIX FOR REPRODUCIBILITY

To support the reproducibility of the results in this paper, we have

released our code and data 1. Our implementation is based on

MXNet 1.5.1 2, and DGL 0.1.3 3, tested on Ubuntu 16.04 with a GTX

1080 GPU. Here, we detail the datasets, the baseline settings, and

the training settings of ST-MetaNet.

A.1 Detailed Settings of Taxi Flow Prediction

Preprocessing of Datasets

We split Beijing city (lower-left GCJ-02 coordinates: 39.83, 116.25;

upper-right GCJ-02 coordinates: 40.12, 116.64) into 32×32 grid. The

statistics of datasets are in Table 4.

Table 4: Details of the datasets in taxi flow prediction. The

datasets tagged by * are processed data for prediction.

Datasets Property Value

*Taxi flows

Timespan 2/1/2015 - 6/2/2015

Time interval 1 hour

timestamps 3600

POIs
POIs 982,829

POI categories 668

Road networks
roads 690,242

road attributes 8

*Geo-graph

nodes 1024

edges 4114

node features 989

edge features 32

Taxi flow. We obtain taxi flows from TDrive dataset, which con-

tains a large amount of taxicab trajectories from Feb. 1st 2015 to

Jun. 2nd 2015. For each grid, we calculate the hourly inflows and

outflows from these trajectories by counting the number of taxis

entering or exiting the grid.

POIs. This dataset contains large amounts of POIs in Beijing city.

For each grid, we calculate the numbers of POIs for all categories

respectively and use them as the node attributes of that grid.

Road networks. The road network dataset contains large amounts

of roads in Beijing, each of which has many road attributes, such as

length, level, max speed, etc. For each grid, we calculate some road

attributes within it, such as the total number of roads and lanes in

this grid, as the node attributes. Then if there are roads connecting

a pair of grids, we also extract similar road attributes from these

roads, as the edge attributes.

In the experiment, we collect geo-graph attributes from POIs

and road networks as we demonstrate above. Then we use previous

12-hour flows to predict the next 3-hour flows. We partition the

flow dataset on time axis into non-overlapping training, evaluation,

and test data, by the ratio of 8:1:1.

Settings of Baselines

The details of the baselines are as follows:

• HA. For each grid, we average the hourly flows by dates in the

training dataset, which provides 24 inflows and outflows as the

prediction results for all days.

1https://github.com/panzheyi/ST-MetaNet
2https://github.com/apache/incubator-mxnet
3https://github.com/dmlc/dgl

• ARIMA. We train an individual ARIMA model for each grid and

predict future steps separately. The model are implemented using

the statsmodel python package. We set the orders as (12,1,0).

• GBRT. For each future step (e.g., next 1 hour or next 2 hour), we

train a single GBRT and predict the urban traffic, where the input

consists of previous traffic information and features of grids. The

GBRT is implemented by sklearn python package, with parameters:

n_estimators = 500,max_depth = 3,min_samples_split = 2, and

learninд_rate = 0.01.

• Seq2Seq.We implement a two-layer sequence-to-sequencemodel

for urban traffic prediction, where GRU is chosen as the RNN im-

plementation. It contains 2 layers of GRU, each of which has 128

hidden units. The features of nodes, i.e., node attributes, are firstly

embedded by a two-layer FCN with hidden units [32,32]. Then the

outputs of FCN fuse with the outputs of the decoder in Seq2Seq. Fi-

nally, the fused vectors are linearly projected into two-dimensional

vectors, as the predictions of inflow and outflow.

• GAT-Seq2Seq. We employ graph attention network and Seq2Seq

to model spatial and temporal correlations, respectively. It applies

the similar structure as ST-MetaNet, which consists of a GRU layer,

a GAT layer, and a GRU layer. All these layers have 128 hidden units,

respectively. Like Seq2Seq, we also embed the node attributes by a

two-layer FCN with hidden units [32,32], and fuse the embeddings

with the outputs of decoder. Finally, the fused vectors are linearly

projected into two-dimensional vectors, as the predictions of inflow

and outflow.

• ST-ResNet. It models the spatio-temporal correlations by ResNet.

The ST-ResNet is composed of many residual units with channel

size: [64,64,64,64,32,32,32,32,16,16,16,16]. We further fuse its output

with embeddings of node attributes, which is encoded by a two-

layer FCN with hidden units [32,32]. And finally, we project the

hidden states of each grid into two-dimensional vectors, as the

predictions of inflow and outflow.

All deep models above are implemented by MXNet.

Settings of ST-MetaNet

The structure of ST-MetaNet for taxi flow prediction is as follow:

• RNN. We adopt GRU as the implementation of RNN, in which

the dimension of hidden state is 64.

• NMK-Learner. It is a two-layer FCN with hidden units [32, 32].

• EMK-Learner. It is a two-layer FCN with hidden units [32, 32].

• Meta-GAT. The meta learner to generate the weights of GAT is a

FCN with hidden units [16, 2,n], where n is the dimension of the

target parameters. The Meta-GAT outputs a 64-dimensional hidden

states for each grid.

• Meta-RNN. We adopt Meta-GRU as Meta-RNN implementation,

in which the dimension of hidden state is 64. The meta learner to

generate the weights of GRU is a FCN with hidden units [16, 2,n],
where n is the dimension of the target parameters.

The Framework is trained by Adam optimizer with learning rate

decay. The initial learning rate is 1e-2, and it is divided by 10 every

20 epochs. We also apply gradient clipping before updating the pa-

rameters, where the maximum norm of the gradient is set as 5. To

tackle the discrepancy between training and inference in Seq2Seq

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1729

architecture, we employ inverse sigmoid decay for schedule sam-

pling in the training phase:

ϵi =
k

k + exp(i/k)
, (4)

where we set k = 2000. The batch size for taxi flow prediction is

set as 16.

A.2 Detailed Settings of Traffic Speed
Prediction

Preprocessing of Datasets

In this task, we predict both short-term and long-term traffic speed

on road networks. The details of the datasets are as follow.

Traffic speed. We adopt METR-LA dataset, which is collected

from loop detectors in the highway of Los Angeles County as

shown in Figure 10. This dataset contains traffic speed readings

Figure 10: Distribution of loop detectors on roads.

from 207 sensors (nodes). The data is further processed and public

in https://github.com/liyaguang/DCRNN, in which the readings are

aggregated into 5-minute windows. The details of datasets is shown

in Table 5.

Table 5: Details of the datasets in speed prediction. The

datasets tagged by * are processed data for prediction.

Datasets Property Value

*Traffic speed

Timespan 3/1/2012 - 6/30/2012

Time interval 5 minute

timestamps 34272

Road networks
roads 11753

road attributes 1

*Geo-graph

nodes 207

edges 3726

node features 20

edge features 1

Road networks. This dataset only contains road distance between

nodes. We firstly extract road structure information for each node

as the node attributes. Specifically, the road structure for a single

node is a collection of information about the distance between

the node and its k-nearest neighbors. For each node, we sort the

k-nearest distance, and get the sorted array as the attributes of this

node. Then we extract edge attributes, which are simply defined

as the road distance between nodes. For the efficiency of model

training and testing, we only keep the edge between each node and

its k-nearest neighbors. Since the traffic correlations are directional

on road networks, we collect edge attributes in both directions

respectively.

In addition, the GPS coordinates of all loop detectors, are also

used as the node attributes.

In this task, we set k = 8, and get the geo-graph data from road

networks as we demonstrate above (in Table 5). We use previous

60-minute traffic speed to predict speed in the next 60 minutes. We

partition the traffic speed dataset on time axis into non-overlapping

training, evaluation, and test data, by the ratio of 7:1:2.

Settings of Baselines

The details of the baselines are as follows:

• HA. For each grid, we average the 5-minute speed by dates in

the training dataset, which provides 24 × 12 speed readings as the

prediction results for all days.

• ARIMA. We train an individual ARIMA model for each loop

detectors. We set the orders as (12,1,0).

• GBRT. We employ the same model as the GBRT in taxi flow

prediction, with parameters: n_estimators = 500,max_depth = 3,

min_samples_split = 2, and learninд_rate = 0.01.

• Seq2Seq. We employ the same Seq2Seq model as taxi flow pre-

diction. The hidden units of GRUs are 64, and the node attributes

are embedded by a two-layer FCN with hidden units [32,32].

• GAT-Seq2Seq. We employ the same GAT-Seq2Seq model as taxi

flow prediction. The hidden units of GAT and GRUs are 64, and

the node attributes are embedded by a two-layer FCN with hidden

units [32,32].

• DCRNN. This model is state-of-the-art in traffic prediction on

road networks. it employs the diffusion convolution operator and

Seq2Seq to capture spatial and temporal correlations, respectively.

We use the implementation of DCRNN from its author’s github 4

(version 80e156c). We apply a two-layer Seq2Seq network based on

diffusion convolution gated recurrent unit with 64 hidden units to

predict future traffic.

Settings of ST-MetaNet

The structure of ST-MetaNet for taxi flow prediction is as follow:

• RNN. We adopt GRU as the implementation of RNN. The dimen-

sion of its hidden state is 32.

• NMK-Learner. It is a two-layer FCN with hidden units [32, 32].

• EMK-Learner. It is a two-layer FCN with hidden units [32, 32].

• Meta-GAT. The meta learner to generate the weights of GAT is a

FCN with hidden units [16, 2,n], where n is the dimension of the

target parameters. The Meta-GAT outputs a 32-dimensional hidden

states for each grid.

• Meta-RNN. We adopt Meta-GRU as Meta-RNN implementation,

in which the dimension of hidden state is 32. The meta learner to

generate the weights of GRU is a FCN with hidden units [16, 2,n],
where n is the dimension of the target parameters.

The Framework is trained by Adam optimizer with learning rate

decay. The initial learning rate is 1e-2, and it is divided by 10 every

20 epochs. We also apply gradient clipping with the maximum

norm of gradient 5. We employ inverse sigmoid decay for schedule

sampling in the training phase (as Eq. 4), where we set k = 2000.

The batch size for traffic speed prediction is set as 32.

4https://github.com/liyaguang/DCRNN

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1730

