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ABSTRACT
As urban crimes (e.g., burglary and robbery) negatively impact our
everyday life and must be addressed in a timely manner, predict-
ing crime occurrences is of great importance for public safety and
urban sustainability. However, existing methods do not fully ex-
plore dynamic crime patterns as factors underlying crimes may
change over time. In this paper, we develop a new crime prediction
framework–DeepCrime, a deep neural network architecture that
uncovers dynamic crime patterns and carefully explores the evolv-
ing inter-dependencies between crimes and other ubiquitous data
in urban space. Furthermore, our DeepCrime framework is capa-
ble of automatically capturing the relevance of crime occurrences
across different time periods. In particular, our DeepCrime frame-
work enables predicting crime occurrences of different categories
in each region of a city by i) jointly embedding all spatial, temporal,
and categorical signals into hidden representation vectors, and ii)
capturing crime dynamics with an attentive hierarchical recurrent
network. Extensive experiments on real-world datasets demon-
strate the superiority of our framework over many competitive
baselines across various settings.
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1 INTRODUCTION
Crimes (e.g., robbery, rape and murder) severely threaten public
safety and have emerged as one of the most important problems
countries face [9]. According to the annual crime report, over half
a million children and youth aged 10-24 years suffered nonfatal
physical assault injuries which are related to stabbings and gun
shots [26], and recorded crimes has increased from 2300 to 3000
for every 100,000 people during the period of 1980 to 2000 [41].
Therefore, to improve citizen’s life quality, accurate and reliable
prediction of crimes is a necessity for helping governments and
police departments to effectively prevent crimes from happening
and/or handle them efficiently when they occur [19]. In this paper,
we aim to predict crimes in each region of a city before they happen.

To tackle the crime prediction problem, most of existing tech-
niques utilize the demographic data (e.g., racial composition of
population, population poverty level) [2, 8, 11], which fail to cap-
ture the dynamic crime patterns in urban space due to the relatively
stability of demographic features. Only a small number of schemes
been proposed more recently to study the crime prediction problem
by exploring the spatial and temporal patterns of crimes [36, 40].
However, these solutions did not fully solve the crime prediction
problem in a dynamic scenario where factors underlying crime
occurrences may change over time.

Developing such a crime prediction system, however, requires
addressing several important technical challenges:
Temporal Dynamics of Crime Patterns. The factors underly-
ing crime occurrences may change over time. For example, crime
causality on weekdays may differ from weekends. Traditional fore-
casting approaches, such as Auto-Regressive Integrated Moving
Average (ARIMA) [16] and Support Vector Regression (SVR) [3],
assume a fixed temporal pattern of time series, which may become
limited. Furthermore, if only recent data is considered to make pre-
dictions and historical instances are down-weighted, a lot of useful
information (e.g., long-term effects with temporal dependencies of
crimes) will be lost, limiting the already sparse crime data.
Complex Category Dependencies. The dependencies between
different categories of crimes can be arbitrary since any pair of
crime events could potentially be related for different regions. For
example, a robbery occurring yesterday may reduce the probability
of a future crime occurrence in the region, due to increased patrol in
response to the initial robbery. Hence, it is a significant challenge to
generalize the crime prediction framework to handle such complex
dependencies among different categories of crimes across different
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regions over time
Inherent Interrelations with Ubiquitous Data. Various ubiqui-
tous data might provide helpful contextual information for cap-
turing crime patterns. First, anomalies in an urban scenario (e.g.,
blocked driveway and noise) may be considered to be relevant to
the crime occurrences. For instance, the occurrence of an assault is
likely to cause traffic congestion due to the temporary traffic con-
trol by police. Additionally, the citywide Point-of-Interest (POIs)
information can characterize the function of each region in a city.
Such information could offer insights to advance the understand-
ing of implicit dependencies between crimes occurring in different
geographical regions. It is not a trivial task to incorporate both the
static (e.g., POIs) and dynamic (e.g., urban anomalies) ubiquitous
data into the solution of crime prediction.
Unknown Temporal Relevance. The relevance of crimes across
different time frames is unknown. It is not necessary that a future
crime occurrence will be more relevant to a recent crime than one
that is further away. For example, a crime occurring tomorrow may
be related to one occurred yesterday (short-term influence) or last
week (periodic influence). Therefore, it is challenging to determine
the importance of crimes from previous time steps in assisting the
prediction task.

To address the aforementioned challenges in solving the crime
prediction problem, we propose a neural network framework Deep-
Crime to predict the crime occurrences of different categories in
each region of a city. First, we develop a region-category interaction
encoder to handle the complex interactions between regions and
categories of occurred crimes. Second, we propose a hierarchical
recurrent framework to jointly encode the temporal dynamics of
crime patterns and capture the inherent interrelations between
crimes and other ubiquitous data (i.e., urban anomalies and POIs).
Finally, we employ the attention mechanism to capture the un-
known temporal relevance and automatically assign the importance
weights to the learned hidden states at different time frames.

The main contributions of this work are summarized as follows:

• We develop a category dependency encoder that jointly maps
the region and crime into the same latent space with their time-
evolving correlations preserved.
• We propose a hierarchical recurrent framework that is capable of
capturing the dynamic crime patterns and their inherent interre-
lationships with other ubiquitous data. Furthermore, an attention
mechanism is introduced for learning the importance weights of
crime occurrences across time frames for making predictions.
• We perform extensive experiments on real-world datasets col-
lected from NYC. Evaluation results demonstrate that the Deep-
Crime framework significantly outperforms state-of-the-art base-
lines in terms of prediction accuracy across various settings.

The remainder of this paper is organized as follows. We first
formally define the problem in Section 2. We describe the details of
our crime prediction model in Section 3. The evaluation results are
presented in Section 4. In Section 5, we discuss the related work.
We conclude this paper in Section 6.

2 PRELIMINARIES
2.1 Problem Description
In this section, we begin with some necessary notations and then
formally present the problem formulation of crime prediction. Par-
ticularly, we consider a set of I geographic regions in a city (i.e.,
R = (R1, ...,RI )), a set of J crime categories (i.e., C = (C1, ...,C J )),
and K time slots (e.g., days). We refer to an individual region as
Ri ∈ R, an individual crime category as Cj ∈ C , where i , j and
k are defined as the index for the region, category and time slot,
respectively. We first define the input, extracted from crime data,
to our framework.
Definition 1. Crime Matrix CMi . We define a crime matrix
CMi ∈ R

K×J to represent the crime sequences of all categories in
C across K time slots for region Ri . Specifically, in CMi , we set the
element CMk,j

i = 1 if there exists reported crime of category Cj

from region Ri in k-th time slot and CMk,j
i = 0 otherwise.

Along with the rapid progress of urbanization, participatory
urban sensing-based anomaly reporting systems (e.g., 311 govern-
mental non-emergency services) have been developed to enable
pervasive and real-time reporting of anomalies with different cate-
gories in a city (e.g., traffic congestion and noise). These reported
anomalies widely model urban activities and uncover urban dy-
namics across different regions, which was considered to be highly
related to crimes [40]. Furthermore, the distribution of Point-of-
Interests (POIs) in a city characterize the functionality of geographi-
cal regions in urban space. These POIs belong to different categories,
such as food, shopping and business. A recent study has shown
that such POI information is relevant to crime rate analysis [27].

To quantify the relations between crimes and the aforementioned
data sources (i.e., POIs and 311 anomalies), we investigate their
correlations on the real-world datasets from New York City, i.e.,
crime data, POI data and 311 urban anomaly data (we present the
details of these datasets in Section 4). In particular, we first generate
a vector to reflect the frequency of crime occurrence with category
Cj for all regions. Each element in this vector is the number of
days crimes with categoryCj occur. Next, we generate another two
vectors with the same length for POIs and anomalies, respectively,
as: (i) POIs: we generate a vector to represent the density POIs for all
regions in a city. Each element in this vector is the number of venues
belonging to p-th POI category in region Ri . (ii) Anomalies: we
generate a vector to indicate the frequency of anomaly occurrences.
Each element in this vector is the number of anomalies with d-th
category reported from region Ri .

Figure 1(a) and 1(b) show the correlation analysis of different
data sources as evaluated by Pearson correlation coefficients [1].
From Figure 1(a), we can observe that most categories of POIs are
either positively correlated or negatively correlated with crime
occurrences. For example, robberies are more likely to happen in
regions with denser POIs of the Entertainment category (e.g., bars
and clubs). Similarly, we can observe that the urban anomalies are
highly related with crimes from Figure 1(b). Hence, we further
utilize the POI and urban anomaly data in our crime prediction
framework and give the following definitions which serve as the
inputs to our model.
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Figure 1: Correlation analysis between crime occurrences
and the density of POIs as well as frequencies of urban
anomaly occurrences.

Definition 2. UrbanAnomalyMatrixAMi . We define an urban
anomaly matrix AMi ∈ R

J×K to indicate the crime sequences of
all categories acrossK time slots for regionRi . Particularly, inAMi ,
each element AM j,k

i is the number of the j-category crimes that
happened at region Ri in k-th time slot.
Definition 3. Point-of-Interests (POI) Matrix PM . We define
POI Matrix PM ∈ RI×P to represent the semantic function of each
region in a city. Specifically, each element PMi,p represents the
number of POIs with p-th category at region Ri .
Crime Prediction. With the aforementioned notations and defi-
nitions, the problem of crime prediction is formulated as follows:
given the crime matrix CMi , urban anomaly matrix AMi gener-
ated from historical K time slots for region Ri and POI matrix PM ,
the objective of this work is to learn a predictive framework which
infers the unknown crime occurrence of each category Cj at each
region Ri in h future time slots (i.e., CM j, (K+h)

i ).

2.2 Framework Overview
DeepCrime is a multi-layer representation learning framework
which solves the crime prediction problem formulated above. We
present the model architecture in Figure 2, where the output of
one layer serves as the input to the next one. Before presenting
DeepCrime, we elaborate the motivations of the model design that
attempt to address the challenges identified in Section 1.
• To capture the complex temporal dynamics of crime patterns
and its interrelations with ubiquitous data, we develop a hierar-
chical recurrent framework which captures the complex time-
evolving dependencies between the crime occurrences in dif-
ferent time slots. In particular, our framework has a three-level
Gated Recurrent Units (GRU) architecture, to encode the tem-
poral dependencies of crime sequence, anomaly sequence and
their inter-dependencies, respectively. Additionally, DeepCrime
incorporates the POI information as constraints into the region
embedding learning process.
• To model the inherent region-category interactions, for each re-
gion, we first introduce an input weight vector to distinguish
the occurrences of which previous crime categories are more
important for future predictions. Then, we concatenate the re-
gion and crime embedding vector and feed it into a Multilayer

Perceptron (MLP) layer to automatically assign an importance
weight to each crime category.
• To address the challenge of unknown temporal relevance be-
tween past and future crime occurrences, we design an attention
layer that models the importance of crime occurrence in each of
past time slots for predicting future crimes.
• Finally, the concatenated hidden state from the attention layer
is fed into a Multilayer Perceptron neural architecture to map
the learned latent vectors to the predictive probability of crime
occurrence of each category in each region of a city.

3 METHODOLOGY
In this section, we present the details of our DeepCrime framework.
DeepCrime consists of three major modules: Region-Category In-
teraction Encoder, Hierarchical Recurrent Framework and Attention
Mechanism. We will explain these three modules in detail in the
following subsections.

3.1 Category Dependency Encoder
To consider the geographical context of regions, we first incorpo-
rate the POI information into the process of generating the region
embedding vector. Formally, we define the constraint term as fol-
lows:

Lossc =
1
R
|ER − PM ·WPOI | (1)

whereWPOI represents the transition matrix which maps POI ma-
trix PM into the same space as the region embedding vector ER .

In order to capture the inherent dependencies across categories,
we first define the input weight vector µ with a size of J and each
element µ j represents the relevance weight between the j-th crime
category and the target crime category. We perform a element wise
product between input weight vector µ and crime vector CMi,k of
region Ri in k-th time slot to generate a new vector which serve
as the input to the recurrent framework. Similar operations are
conducted between µ and AMi,k for urban anomalies.

3.2 Hierarchical Recurrent Framework
We develop a hierarchical recurrent framework to encode the tem-
poral dynamics of crime patterns and their inherent interrelations
with urban anomalies. Recurrent Neural Network (RNN) models
have been widely applied in time series analysis. There exist various
RNN architectures with different recurrent units, such as RNN [23],
Long Short Term Memory (LSTM) [43] and Gated recurrent units
(GRU) [37]. GRU is similar to LSTM as both utilize gating informa-
tion to prevent vanishing gradient problem in conventional RNN,
but is computationally more efficient and effective on less training
data [6]. Therefore, in this section, we introduce GRU as a concrete
example of a recurrent unit for our recurrent framework. Our re-
current framework is flexible to employ other recurrent units (e.g.,
LSTM). The effect of recurrent unit selection on model performance
is explored in Section 4.

Our recurrent framework has a three-level GRU architecture. In
particular, its first level Crime-GRU encoder, encodes the temporal
dependencies of the time-ordered crime sequence CMi of region
Ri . In addition, the second level Anomaly-GRU encoder, models the
time-ordered anomaly sequenceAMi of region Ri in a similar way.
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Figure 2: The DeepCrime Framework.

In the third level, we aim to employ another GRU encoder Inter-
GRU to model the inherent dependencies between the occurrence
of crimes and urban anomalies by concentrating their respective
hidden state from each time slot.

In particular, GRU proposes to derive the vector representations
of hidden states ht for each time step t as follows:

x ′t =xt ⊙ ReLU (Wa[Eo ;Er ] + ba )
rt =σ (Wrht−1 +Vrx

′
t + bi )

zt =σ (Wzht−1 +Vzx
′
t + bo )

h̃t =ϕ (Whht−1 +Vh (x
′
t ⊙ h̃t−1) + bh )

ht =zt ⊙ ht−1 + (1 − zt ) ⊙ h̃t (2)

whereW∗ ∈ Rds×ds represents the transformation matrix from the
previous state ht−1 to GRU cell and V∗ ∈ Rdx×ds are the transfor-
mation matrices from input to GRU cell, where dx and ds denote
the dimension of input vectors and hidden states, respectively. Fur-
thermore, b∗ ∈ Rds is defined as a vector of bias term. σ (·) and
ϕ (·) represent the sigmoid and tanh function, respectively. The
⊙ operator denotes the element-wise product. In Eq. 2, rt and zt
represent the update and reset gate, respectively. For simplicity,
we denote Eq. 2 as ht = GRU(∗,ht−1) in the following subsections.
We formally define the corresponding hidden state in Crime-GRU,
Anomaly-GRU and Inter-GRU, respectively as follows:

ht = GRU(CMi ,ht−1)

дt = GRU(AMi ,дt−1)

λt = GRU(Λ,ht−1) (3)

where ht and дt represent the hidden state corresponding to Crime-
GRU and Anomaly-GRU encoder, respectively. In particular, we
feed a concatenated vector [ht ;дt ] as input into the Inter-GRU en-
coder to explore the dynamic interactions between the occurrences
of crimes and urban anomalies. Λ denotes the sequence of concate-
nated vector acrossT time slots. Formally,Λ = [[h1;д1], ..., [hT ;дT ]].
λt is the hidden state of Inter-GRU encoder which captures the
inherent dependencies between the crime and anomaly sequence.

3.3 Attention Mechanism
One limitation of the recurrent neural network based architectures
lies in that they encode the input sequence to a fixed length internal
representation, which results in worse performance for long input
sequences [25]. To overcome this limitation, the attention mecha-
nism was proposed to allow the proposed hierarchical recurrent
framework to learn where to pay attention in the input sequence
for each item in the output sequence [29]. Particularly, the attention
mechanism aims to free the encoder-decoder architecture from the
fixed-length internal representation by introducing a context vector
to model the relevance. Formally, the attention mechanism can be
represented as follows:

um =tanh(Wvvm + bv )

αm =
exp (Wuum )∑
m′ exp (Wuum′ )

v̂ =
M∑

m=1
αmvm (4)

where we use S to represent the attention dimension size.Wv ∈

RS×E andWu ∈ R
1×S represent attention weight metrics. bm ∈ RS

is the attention bias. The number of input vectors is denoted byM .
αm indicates the learned importance weight which corresponds to
projected vectorvm and v̂ represents the new hidden representation
which concatenates different hidden vectors. We further defineWm
andWu as two transmissionmatrices. For simplicity, we denote Eq. 4
as v̂ = Attention(v1, ...,vm , ...,vM ) in the following subsections.

Our objective is to predict the crime occurrence in each region
Ri ∈ [R1, ...,RI ] in the target time slot, based on the distribution
patterns of past crimes and urban anomalies, i.e., [x1,...,xT ] and
[y1,...,yT ]. However, our developed recurrent framework only en-
codes the input sequence from previous slots with a fixed length T
using internal representations and the performance will drop when
the sequence length is large. To address this drawback, we propose
to employ an attention mechanism on our recurrent framework to
capture the relevance of crime patterns learned from previous time
slots in assisting the prediction of future crime occurrences.



In our attention mechanism, we estimate the importance of
anomaly occurrence in past time slots by deriving a normalized
importance weight via a softmax function. We define λ̂ as the
concatenated hidden state in our attention mechanism as: λ̂ =
Attention(λ1, ...,λT ).

3.4 Multilayer Perceptron (MLP)
Finally, the Multilayer Perceptron (MLP) component is utilized
to derive the occurrence probability by capturing the non-linear
dependencies between elements in hidden vectors. Formally, we
represent MLP as follows:

L1 = ϕ (W1 · λ1 + b1)

......

Ln = ϕ (Wn · λn + bn )

zi,j,k = σ (W ′ · Ln + b
′) (5)

where n represents the number of hidden layers in MLP (indexed
by l ). For the Ll layer,Wl and bl represent the activation function
(i.e., ReLU function) of MLP layers, weight matrix and bias vector,
respectively. We further specify the activation function as sigmod
(denoted as σ ) to output the crime occurrence probability of cate-
goryCj at region Ri in k-th time slot, i.e., zi,j,k . In the experiments,
we set the number of layers in MLP as 3.

3.5 Learning Process of DeepCrime
In this subsection, we describe the learning process of our Deep-
Crime framework as introduced in Section 3, our objective is to
derive the value of zi,j,k which denotes: does crime with category
Cj occur at region Ri in k-th time slot. A commonly used metric in
the loss function of binary classification tasks is cross entropy [22].
Thus, we define our loss function which incorporates the constraint
term in Eq. (1) as follows:

L = −
∑
i,j,k

zi,j,k logẑi,j,k + (1 − zi,j,k ) log(1 − ẑi,j,k )

+
1
R
|ER − PM ·WPOI | (6)

where ẑi,j,k denotes the estimated probability of j-th category crime
occurrence in region Ri in k-th time slot. Here, S is the sampled
crimes in the training process. The weights can be achieved by
minimizing the loss function. In this work, we use AdaptiveMoment
Estimation (Adam) [17] to learn the parameters of DeepCrime.

4 EVALUATION
In this section, we perform experiments to evaluate the performance
of DeepCrime on the real-world datasets collected from New York
City (NYC). In particular, we aim to answer the following questions:
• Q1: How does our DeepCrime framework perform as compared
to the state-of-the-art techniques in predicting crime occurences
of different categories?
• Q2: Does DeepCrime consistently outperform other baselines in
terms of prediction accuracy w.r.t different time windows with
different training and testing time periods?

Table 1: Details of the datasets.

Data Source New York City Crime Reports
Time Span From Jan, 2014 to Dec, 2014
Category Burglary Robbery
Number of Instances 16,720 16,557
Category Felony Assault Grand Larceny
Number of Instances 19,059 51,577
Data Source Point-of-Interests (POI)
Category # Category #
Arts & Entertainment 720 Automotive & Vehicles 1505
Business to Business 3717 Computers & Technology 637
Education 1062 Food & Dining 3385
Government & Community 3116 Health & Beauty 4336
Home & Family 3616 Legal & Finance 1782
Real Estate & Construction 4675 Shopping 1874
Sports & Recreation 384 Others 1378
Data Source 311 Public-Service Complaints
Time Span From Jan, 2014 to Dec, 2014
Category Noise Blocked Driveway
Number of Instances 151,174 92,335
Category Illegal Parking Building Use
Number of Instances 69,100 27,724

• Q3: How is the performance of DeepCrime variants with different
combinations of key components in the joint framework?
• Q4: How the different choices of model parameters (e.g., embed-
ding size and number of hidden layers) affect the performance of
DeepCrime?
• Q5: How is the interpretation of our DeepCrime framework in
capturing the unknown temporal relevance when predicting
crimes.

4.1 Experimental Setup
4.1.1 Data. We evaluated our framework with three datasets col-
lected in New York City (NYC): (Detailed in Table 1).

1) Crime Data: We evaluated our DeepCrime framework on the
real-world crime data collected from New York City (NYC) Open-
Data portal 1 from Jan 1, 2014 to Dec 31, 2014. Each crime record
is in the format of (crime category, latitude, longitude, timestamp).
In this work, we focus on the crime categories whose average fre-
quency of occurrence is greater than 9 times for each region in
a city per month, namely, Robbery, Burglary, Felony Assault and
Grand Larceny.

Figure 3 shows the geographical distributions of different cat-
egories of crime occurrences in New York City (NYC) on August
and December, respectively. From these visualization results, we
can observe that (i) different geographical regions have different
crime occurrence distributions given a specific crime category; (ii)
crimes of different categories exhibit different occurrence patterns
in the same region of a city; (iii) crimes from different time periods
show different geographical distribution patterns. Inspired by the
above observations, we propose to explicitly explore the inherent
correlations between regions, crime categories and time slots with

1https://data.cityofnewyork.us/
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Figure 3: Geographical distribution of crime occurrences with different categories in New York City on August and December,
respectively.

an attention-based hierarchical recurrent networks.
2) Point of Interests (POIs): We collected 24,031 POIs of 14

categories (e.g., Arts & Entertainment and Shopping, detailed in
Table 1). Each POI is formatted as (venue name, category, address,
latitude, longitude).

3) 311 Public Service Complaint Data: These datasets are col-
lected from 311 Service which documents urban complaint reports
of different categories from citizens through a mobile app or phone
calls. Each complaint record is in the format of (complaint category,
latitude, longitude, timestamp). We selected 4 key complaint cate-
gories (e.g., Noise, Blocked Driveway, Illegal Parking and Building
Use) which are studied in [33].

We divided New York City into 77 disjointed geographical re-
gions based on the information of political districts 2. Each region
is an area of the city as defined for police purposes. This method
was also applied in geographical partition of the city in previous
crime analysis work [26].

4.1.2 Parameter Settings. The hyper-parameters play impor-
tant roles in DeepCrime, as they determine how the model will be
trained. In our experiments, we vary each of the key parameters
in DeepCrime and fix others to examine the parameter sensitivity
of the proposed method. We implemented our framework based
on TensorFlow and used Adam [17] as our optimizer to learn the
model parameters. The hyperparameter settings are optimized with
the grid search strategy. In our experiments, we set the batch size
as 64, learning rate as 0.001 and the number of hidden layers in
Multilayer Perceptron component as 3.

4.1.3 Baselines. We compare DeepCrime with the following four
types of baselines: (i) variant of Recurrent Neural Network mod-
els for time series prediction. (i.e., GRU); (ii) conventional time
series forecasting methods (i.e., ARIMA and SVR); (iii) both the
conventional and neural feature-based supervised learning meth-
ods for classification (i.e., LR, MLP and Wide&Deep); (iii) tenor
factorization-based method for predictive analytics (i.e., TriMine).
• Support Vector Regression (SVR) [3]: a non-parametric ma-
chine learning method for regression based on kernel functions.

2https://data.cityofnewyork.us/Public-Safety/Police-Precincts/78dh-3ptz/data

• Auto-Regressive IntegratedMovingAverage (ARIMA) [16]:
a well-known time series prediction model for understanding
and predicting future values in a time series.
• Logistic Regression (LR) [13]: a statistical model which fore-
casts a region’s crime occurrence based on temporal features
(e.g., the day of a week and the month of a year) extracted from
historical crime logs.
• Multilayer Perceptron (MLP) [7]: it incorporates temporal fea-
tures from historical distributions of crimes into a deep neural
network architecture, to model the non-linearities in crime data.
• Tensor Decomposition (TriMine) [24]: We apply this method
to predict crime occurrences by extending the Matrix Factoriza-
tion scheme to consider the temporal dimension of crime data.
Specifically, we utilize a three-dimension tensor to represent the
crime series of all regions in a city (1th dimension–region, 2nd
dimension–crime category and 3rd dimension–time).
• Wide and Deep Learning (Wide&Deep) [4]: a wide & deep
learning framework to combine the strengths of wide linear
models and deep neural networks for predictive analytics.
• GatedRecurrent Unit (GRU) [5]: a gating recurrent neural net-
work model which has fewer parameters than LSTM by lacking
an output gate to achieve computational efficiency.

In our experiments, all parameters are also learned using the Adam
optimizer.
4.1.4 Evaluation Protocols. To validate the performance of all
compared methods in predicting crime occurrences (posed as a
classification problem) of each region in a city, we adopt two types of
evaluation metrics: (i) we use F1-score (trade-off between precision
and recall) to evaluate the accuracy of predicting a specific category
of crime occurrence. (ii) We use Marco-F1 and Micro-F1 [12] to
evaluate the prediction accuracy across different crime categories.
These metrics have been widely used in the problems of multi-class
classification to calculate the overall performance across different
classes. In our work, we consider each crime category (e.g., burglary
and robbery) as an individual class. Note that a higher Micro-F1
and Macro-F1 score indicates better performance.

In our evaluation, we split the datasets chronologically into
training (6.5 months), validation (0.5 month) and test (1 month)
sets. The validation datasets are used to tune hyper-parameters and
test datasets are used to evaluate the performance of all compared



Table 2: Crime prediction results across different categories in terms ofMacro-F1 andMicro-F1.

Month August September October November December
Algorithm Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
SVR 0.6251 0.5202 0.6315 0.5244 0.6383 0.5380 0.6312 0.5400 0.6394 0.5457
ARIMA 0.6262 0.5377 0.6279 0.5345 0.6362 0.5514 0.6281 0.5478 0.6269 0.5451
LR 0.6341 0.5161 0.6348 0.5176 0.6378 0.5304 0.6260 0.5199 0.6307 0.5248
MLP 0.6432 0.5264 0.6492 0.5444 0.6482 0.5436 0.6389 0.5317 0.6407 0.5317
TriMine 0.6508 0.5326 0.6388 0.5141 0.6432 0.5258 0.6434 0.5538 0.6402 0.5335
Wide&Deep 0.6356 0.5209 0.6390 0.5251 0.6467 0.5419 0.6326 0.5366 0.6431 0.5464
GRU 0.6499 0.5836 0.6486 0.5803 0.6530 0.5879 0.6316 0.5659 0.6354 0.5720
DeepCrime 0.6820 0.6200 0.6790 0.6227 0.6836 0.6233 0.6657 0.6009 0.6683 0.6110

Table 3: Crime prediction results for individual category in terms of F1-score.

Category Burglary Robbery
Algorithm August September October November December August September October November December
SVR 0.4661 0.4629 0.4921 0.4896 0.5241 0.4972 0.5094 0.5152 0.5201 0.5367
ARIMA 0.4767 0.4920 0.4961 0.4850 0.5234 0.5156 0.4967 0.5445 0.5333 0.5441
LR 0.4873 0.4941 0.4927 0.5032 0.5246 0.5165 0.4658 0.5066 0.5032 0.5246
MLP 0.4945 0.5106 0.5082 0.5087 0.5633 0.5514 0.5304 0.5586 0.5483 0.5537
TriMine 0.5081 0.4638 0.5110 0.5276 0.5306 0.5712 0.5096 0.5408 0.5161 0.5576
Wide&Deep 0.4642 0.5080 0.5236 0.4985 0.5482 0.5314 0.4878 0.5269 0.5325 0.5549
GRU 0.5394 0.5569 0.5633 0.5147 0.5378 0.5631 0.5446 0.5784 0.5491 0.5684
DeepCrime 0.6173 0.6052 0.6051 0.5902 0.5912 0.6300 0.5848 0.6177 0.5993 0.6228
Category Felony Assault Grand Larceny
Algorithm August September October November December August September October November December
SVR 0.5891 0.6089 0.5750 0.5842 0.5893 0.8593 0.8581 0.8653 0.8426 0.8354
ARIMA 0.5967 0.5974 0.5746 0.5821 0.5627 0.8491 0.8542 0.8552 0.8366 0.8301
LR 0.5779 0.5992 0.5808 0.5704 0.5512 0.8713 0.8644 0.8669 0.8440 0.8405
MLP 0.5917 0.6272 0.5973 0.5961 0.5600 0.8728 0.8638 0.8650 0.8432 0.8423
TriMine 0.6282 0.6325 0.5891 0.6144 0.5913 0.8702 0.8636 0.8658 0.8442 0.8415
Wide&Deep 0.5865 0.6073 0.5964 0.5743 0.5675 0.8718 0.8633 0.8651 0.8430 0.8436
GRU 0.5992 0.6060 0.5909 0.5815 0.5561 0.8656 0.8529 0.8566 0.8356 0.8330
DeepCrime 0.6459 0.6636 0.6336 0.6246 0.6120 0.8734 0.8645 0.8664 0.8443 0.8432

algorithms. All experiments are conducted across 30 consecutive
days in test time frames and the average performance is reported.

4.2 Performance Validation (Q1 and Q2)
To investigate the performance of all comparedmethods on different
targeted time frames, we show the evaluation results from Aug 2014
to Dec 2014. We have the following key observations.
(1). Tables 2 and Table 3 list the evaluation results of all compared
methods with respect to different training and test time windows.
We observe that DeepCrime outperforms other baselines over dif-
ferent time frames (i.e., from Aug to Dec). For example, DeepCrime
achieves relatively 4.5% and 6.1% improvements over the best per-
formed baseline (i.e., GRU) in terms of Macro-F1 and Micro-F1 on
October. In addition, although different time windows reflect a
spectrum of temporal diversity which is maintained by month and
season variation (e.g., Aug–Summer, Sep, Oct–Autumn and Nov,
Dec–Winter), our proposed method consistently achieves the best

performance by capturing this temporal dynamic. Therefore, the
evaluation results across different time frames demonstrate the ef-
fectiveness of DeepCrime in modeling time-evolving dependencies
in crime sequences and reasonably interprets the importance of
past crime occurrences in predicting future crimes.
(2). We perform experiments to evaluate DeepCrime in predicting in-
dividual crime categories as shown in Table 3. Overall, our proposed
framework achieves the best performance across different crime
categories in all cases. On average, DeepCrime achieves relatively
11.0%, 18.8% and 18.7% performance gains in terms of F1-score over
GRU, Wide&Deep and TriMine, respectively (representing different
types of baselines) when predicting Burglaries. In addition, obvious
average improvements can also be obtained by DeepCrime in pre-
dicting Robberies, e.g., 21.9%–LR. Another important observation is
that the performance gain between DeepCrime and other baselines
becomes larger as data becomes sparser (as shown in Table 1). This
observation suggests that DeepCrime is capable of handing sparse



crime data by exploring inherent region-category-time interactions
and utilizing various ubiquitous data. In the occasional cases that
DeepCrime misses the best performance in predicting Grand Larce-
nies, it still achieves competitive prediction results.

(3). We observe that DeepCrime shows improvement over all base-
lines. First, the large performance gap between DeepCrime and
recurrent neural network-based scheme (i.e., GRU) indicates the lim-
itation of those approaches–only modeling the sequential pattern of
the crimes and ignoring the relevant ubiquitous data and inherent
region-category interactions. Second, the evaluation results shed
light on the limitations of feature-based learning algorithms (i.e.,
LR, MLP andWide&Deep) which ignore the temporal dynamics em-
bedded in the crime series data. Third, the significant performance
improvement between DeepCrime and matrix factorization-based
method (i.e., TriMine) stem from explicitly modeling temporal dy-
namics of latent factors underlying crime occurrences with ubiqui-
tous Data. Fourth, DeepCrime outperforms conventional time series
forecasting methods (i.e., ARIMA and SVR) due to their assumption
of fixed temporal pattern.

4.3 Evaluations on Variants of DeepCrime (Q3)
In addition to comparing DeepCrime with state-of-the-art tech-
niques, we also aim to get a better understanding of the proposed
framework and evaluate the key components ofDeepCrime. Namely,
we aim to answer the following three questions: (1) Whether each
key learning component plays a crucial role in the joint representa-
tion learning model DeepCrime? (2) Are the features extracted from
other ubiquitous data (e.g., POIs and urban anomalies) helpful for
predicting crimes? (3) How does the selection of the recurrent unit
affect the performance of DeepCrime? Hence, in our evaluation, we
consider four variants of the proposed method corresponding to
different analytical aspects mentioned above. We define the full
version of DeepCrime introduced in Section 3 as DeepCrime-F.
• Ubiquitous Data (DeepCrime-d): A simplified version of Deep-
Crime which models crime series data using a single level of
gated recurrent units, i.e., without incorporating the features
extracted from other ubiquitous data into the solution.
• CategoricalDependencies (DeepCrime-c): Thismethod ignores
the inherent dependencies between different crime categories,
i.e., using crime vectors from individual categories as the input
to the proposed model.
• Attention Mechanism (DeepCrime-a): Another simplified ver-
sion of DeepCrime which only uses the hidden states generated
by hierarchical gated recurrent units to predict the future crime
occurrence, i.e., without employing any attention mechanism.
• Recurrent Unit Selection (DeepCrime-l): It utilizes the LSTM
as the basic recurrent unit for encoding the crime and ubiqui-
tous data with temporal dynamics in the proposed hierarchical
architecture, i.e., employing LSTM as the recurrent unit instead
of GRU in DeepCrime for modeling the chronological sequence
generated from both crime and anomaly data.
We report the evaluation results in Figure 4. From this figure,

we can notice that the full version of our developed framework
DeepCrime-F achieves the best performance in all cases. In particu-
lar, we summarize four key observations:
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Figure 4: Evaluation on the Variants of DeepCrime in terms
of Micro-F1 andMacro-F1.

• (i) DeepCrime-F outperforms DeepCrime-d (without using the
anomaly and POI data) in all cases, suggesting that ubiquitous
data provides additional information in modeling the dynamic
patterns of crime occurrences across time frames.
• (ii) Overall, DeepCrime-F outperforms the variant DeepCrime-c
which does not consider the implicit dependencies across time
slots between crimes with different categories. This observation
justifies the effectiveness of DeepCrime in capturing the categori-
cal interrelations between crime occurrences over time.
• (iii) Note that when the attention mechanism is applied to model
the unknown temporal relevance between crime occurrences
across time slots, the prediction performance is improved. Hence,
we can see the efficacy of attention mechanism for helping Deep-
Crime make correct predictions.
• (iv) DeepCrime-F outperforms DeepCrime-l (LSTM unit) in most
cases. We chose GRU in DeepCrime framework for improving
computational efficiency and prediction accuracy.
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Figure 5: Parameter sensitivity study on the performance of
DeepCrime in terms ofMicro-F1 andMacro-F1 on August.
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Figure 6: Parameter sensitivity study on the performance of
DeepCrime in terms of F1-score on August.

4.4 Parameter Sensitivity Studies (Q4)
DeepCrime involves several parameters (i.e., embedding size of re-
gion, categorical crime representations, # of time steps and hidden
state dimension in recurrent framework, dimension size in atten-
tion mechanism). To investigate the robustness of the DeepCrime
framework, we examine how the different choices of parameters af-
fect the performance of DeepCrime in predicting crimes. Except for
the parameter being tested, we set other parameters at the default
values.

Figure 5 shows the evaluation results across crime categories
(measured by Macro-F1 and Micro-F1) as a function of one selected
parameter when fixing others. Overall, we observe that DeepCrime
is not strictly sensitive to these parameters. We observe that the
increase of prediction performance saturates as the length of input
crime sequence reaches around 4. In addition, we set the embedding
size as 32 in our experiments due to the balance between efficacy
and computational cost, i.e., the smaller the embedding size is, the
more efficient the training process will be. Following the same
experimental procedure, we further study the parameter sensitivity
of DeepCrime in predicting individual categories as measured by
F1-score and report the evaluation results in Figure 6. Similarly, we
can observe that hyper-parameters have a relatively low impact on
the performance of DeepCrime, which demonstrates the robustness
of our proposed framework.

4.5 Case Study (Q5)
In addition to the above quantitative analysis, we further investigate
our approach by performing a case study. We provide qualitative
examples in Figure 7 for the better understanding of our attention
model. In particular, Figure 7(a) and Figure 7(b) shows the attention
weights of all true positive regions cases with respect to the Bur-
glary prediction on Sep 09 (weekday) and the Robbery prediction on
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Figure 7: Visualization of attention weights produced by
DeepCrime.

Nov 22 (weekend), respectively. From these figures, we can observe
that the attention weights are time-evolving across the encoder
time steps, which suggests that our DeepCrime is able to capture
the dynamic patterns of crime distributions across time slots. Recall
that attention weights represent the relevance weights of crime
occurrences across previous time slots for making predictions.

5 RELATEDWORK
Numerous novel urban sensing applications have been developed
recently [14, 20, 21, 28, 32, 34, 35, 42]. For example, Lian et al. studied
the problem of restaurant survival prediction by considering geo-
graphical information and user mobility [20]. Furthermore, Wang
et al. proposed to spot and trace the latent trip purposes of taxi
trajectories from a city [28]. However, the crime prediction problem
in urban sensing remains a challenging problem to be solved. In
this paper, we develop an end-to-end model to predict the future
crime occurrence of each geographical region in a city.

There exist prior studies on crime rate inference and detect-
ing crime hotspots [26, 36]. For example, Wang et al. aimed to
infer crime rate in a city by utilizing Point-of-Interest informa-
tion [26]. Yu et al. developed a boosting-based clustering algorithm
to identify crime hotspots [36]. Our work is closely related to works
that study the problem of crime prediction [8, 10, 11, 40] which
can be categorized into two groups. (i) statistical methods: census
statistical information was used to discuss crime events, such as
demographic information [8] and symbolic racism [11]. (ii) data
mining techniques: Gerber et al. using Twitter data to predict crimes
in a city [10]. Zhao et al. addressed the crime prediction problem
by considering spatial-temporal correlations between regions [40].

Most of the above studies forecast the crimes using statistical
or conventional data mining approaches. However, those previous
crime prediction techniques relied on a good amount of high quality
static demographic data or ignored the dynamic temporal depen-
dencies in the distributions of crime sequence. In contrast, this work
develops a neural network-based crime prediction model which
jointly models time-evolving dependencies in multi-dimensional
crime data and incorporates both static and dynamic ubiquitous
data (i.e., POI and urban anomaly data) into our framework.

Our work is related to literature that focuses on modeling time-
stamped data [15, 18, 30, 38, 39]. Recently, in light of the significant
progress yielded by deep learning techniques on natural language



processing and speech, many efforts have been made to apply re-
current neural networks (RNN) and its variants in modeling time
series data [18, 23]. For example, Wu et al. predicted ratings of users
for movies with an LSTM architecture by exploring users’ historical
behavioral trajectories [31]. Laptev et al. proposed a LSTM-based
architecture for special event forecasting at Uber using heteroge-
neous time-series data [18]. Inspired by the above work, we have
developed a new neural architecture to capture the time-varying
patterns in crime sequences and implicit contextual signals embed-
ded in relevant ubiquitous data.

6 CONCLUSION AND FUTUREWORK
Crime prediction is a challenging and important task, and inter-
preting the time-ordered sequential crime data is a hard and vital
problem for predictive model in urban sensing. This paper explored
the neural network architectures to explicitly model the evolving
dependencies in time-ordered crime sequence and implicit multi-
dimensional interactions between regions, categories and time slots.
We evaluate our new framework on real-world datasets collected
from NYC. The results showed that our approach achieves better
performance when competing with baselines.

Notwithstanding the interesting problem and promising results,
some directions exist for future work. First, our DeepCrime is a gen-
eral framework to capture spatial-temporal-categorical dynamics,
we would like to apply our method to a much broader set of urban
data forecasting applications. Second, we would like to explore more
data sources (e.g., social media data) in addition to the ubiquitous
data used in this work.
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